The Vac 14p-Fig4p complex acts independently of Vac7p and couples PI,5P2 synthesis and turnover

被引:111
作者
Duex, JE
Tang, FS
Weisman, LS [1 ]
机构
[1] Univ Iowa, Dept Biochem, Iowa City, IA 52242 USA
[2] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
关键词
D O I
10.1083/jcb.200512105
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Phosphoinositide-signaling lipids function in diverse cellular pathways. Dynamic changes In the levels of these signaling lipids regulate multiple processes. In particular, when Saccharomyces cerevisiae cells are exposed to hyperosmotic shock, PI3,5P(2) (phosphaticlylinositol [PI] 3,5-bisphosphate) levels transiently increase 20-fold. This causes the vacuole to undergo multiple acute changes. Control of PI3,5P2 levels occurs through regulation of both its synthesis and turnover. Synthesis is catalyzed by the PI3P 5-kinase Fab1p, and turnover is catalyzed by the PI3,5P(2) 5-phosphatase Fig4p. In this study, we show that two putative Fab1p activators, Vac7p and Vac14p, independently regulate Fab1p activity. Although Vac7p only regulates Fab1p, surprisingly, we find that Vac14 regulates both Fab1p and Fig4p. Moreover, Fig4p itself functions in both PI3,5P(2) synthesis and turnover. In both the absence and presence of Vac7p, the Voc14p-Fig4p complex controls the hyperosmotic shock-induced increase in PI3,5P(2) levels. These findings suggest that the dynamic changes in PI3,5P(2) are controlled through a tight coupling of synthesis and turnover.
引用
收藏
页码:693 / 704
页数:12
相关论文
共 45 条
[1]   A microtubule-dependent zone of active RhoA during cleavage plane specification [J].
Bement, WM ;
Benink, HA ;
von Dassow, G .
JOURNAL OF CELL BIOLOGY, 2005, 170 (01) :91-101
[2]   Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles [J].
Berwick, DC ;
Dell, GC ;
Welsh, GI ;
Heesom, KJ ;
Hers, I ;
Fletcher, LM ;
Cooke, FT ;
Tavaré, JM .
JOURNAL OF CELL SCIENCE, 2004, 117 (25) :5985-5993
[3]   Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway [J].
Blondeau, F ;
Laporte, J ;
Bodin, S ;
Superti-Furga, G ;
Payrastre, B ;
Mandel, JL .
HUMAN MOLECULAR GENETICS, 2000, 9 (15) :2223-2229
[4]   Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology [J].
Bonangelino, CJ ;
Catlett, NL ;
Weisman, LS .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (12) :6847-6858
[5]   Osmotic stress-induced increase of phosphatidylinositol 3,5-bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p [J].
Bonangelino, CJ ;
Nau, JJ ;
Duex, JE ;
Brinkman, M ;
Wurmser, AE ;
Gary, JD ;
Emr, SD ;
Weisman, LS .
JOURNAL OF CELL BIOLOGY, 2002, 156 (06) :1015-1028
[6]   Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment [J].
Bryant, NJ ;
Piper, RC ;
Weisman, LS ;
Stevens, TH .
JOURNAL OF CELL BIOLOGY, 1998, 142 (03) :651-663
[7]   MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS [J].
CHRISTIANSON, TW ;
SIKORSKI, RS ;
DANTE, M ;
SHERO, JH ;
HIETER, P .
GENE, 1992, 110 (01) :119-122
[8]   Association of SET domain and myotubularin-related proteins modulates growth control [J].
Cui, XM ;
De Vivo, I ;
Slany, R ;
Miyamoto, A ;
Firestein, R ;
Cleary, ML .
NATURE GENETICS, 1998, 18 (04) :331-337
[9]   Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors [J].
Dove, SK ;
Piper, RC ;
McEwen, RK ;
Yu, JW ;
King, MC ;
Hughes, DC ;
Thuring, J ;
Holmes, AB ;
Cooke, FT ;
Michell, RH ;
Parker, PJ ;
Lemmon, MA .
EMBO JOURNAL, 2004, 23 (09) :1922-1933
[10]   Vac14 controls PtdIns(3,5)P2 synthesis and Fab1-dependent protein trafficking to the multivesicular body [J].
Dove, SK ;
McEwen, RK ;
Mayes, A ;
Hughes, DC ;
Beggs, JD ;
Michell, RH .
CURRENT BIOLOGY, 2002, 12 (11) :885-893