Dramatic effect of dispersed carbon nanotubes on the mechanical and electroconductive properties of polymers derived from ionic liquids

被引:205
作者
Fukushima, T
Kosaka, A
Yamamoto, Y
Aimiya, T
Notazawa, S
Takigawa, T
Inabe, T
Aida, T
机构
[1] Natl Museum Emerging Sci & Innovat, ERATO SORST Japan Sci & Technol Agcy, Aida Nanospace Project, Koto Ku, Tokyo 1350064, Japan
[2] Univ Tokyo, Sch Engn, Dept Chem & Biotechnol, Bunkyo Ku, Tokyo 1138656, Japan
[3] Univ Tokyo, Ctr NanoBio Integrat, Bunkyo Ku, Tokyo 1138656, Japan
[4] Kyoto Univ, Fac Engn, Dept Mat Chem, Nishikyo Ku, Kyoto 6158510, Japan
[5] Hokkaido Univ, Grad Sch Sci, Div Chem, Sapporo, Hokkaido 0600810, Japan
关键词
carbon nanotubes; composites; conducting materials; ionic liquids; mechanical properties;
D O I
10.1002/smll.200500404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Free-radical polymerization of an imidazolium ion-based ionic liquid bearing a methacrylate group, gelling with single-walled carbon nanotubes (SWNTs), allows fabrication of a mechanically reinforced, electroconductive soft material (bucky plastic). A film. sample of this material displays an excellent conductivity of 1 S cm(-1) and a 120-fold enhancement of the Young's modulus at a 7 wt% content of SWNTs. The conductivity is temperature-dependent in the range 5-300 K, suggesting that the conductive process involves carrier hopping. Scanning electron and atomic force micrographs of a bucky plastic film display the presence of crosslinked networks consisting of finely dispersed SWNTs. Such nanotube networks, developed in the polymer matrix, likely suppress slipping of entrapped polymer molecules via a strong interfacial interaction and also facilitate intertubular carrier transport. Although a bucky plastic derived from a vinylimidazolium ion-based ionic liquid monomer shows a comparable conductivity to that of the methacrylate version, the film is brittle irrespective of the presence or absence of SWNTs.
引用
收藏
页码:554 / 560
页数:7
相关论文
共 51 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Nanotubes from carbon [J].
Ajayan, PM .
CHEMICAL REVIEWS, 1999, 99 (07) :1787-1799
[4]  
[Anonymous], 2005, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.200462318
[5]   Covalent surface chemistry of single-walled carbon nanotubes [J].
Banerjee, S ;
Hemraj-Benny, T ;
Wong, SS .
ADVANCED MATERIALS, 2005, 17 (01) :17-29
[6]   SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization [J].
Barraza, HJ ;
Pompeo, F ;
O'Rear, EA ;
Resasco, DE .
NANO LETTERS, 2002, 2 (08) :797-802
[7]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[8]   Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer [J].
Bellayer, S ;
Gilman, JW ;
Eidelman, N ;
Bourbigot, S ;
Flambard, X ;
Fox, DM ;
De Long, HC ;
Trulove, PC .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (06) :910-916
[9]   Nanotube composites - A recipe for strength [J].
Calvert, P .
NATURE, 1999, 399 (6733) :210-211
[10]   High-performance nanotube-reinforced plastics: Understanding the mechanism of strength increase [J].
Coleman, JN ;
Cadek, M ;
Blake, R ;
Nicolosi, V ;
Ryan, KP ;
Belton, C ;
Fonseca, A ;
Nagy, JB ;
Gun'ko, YK ;
Blau, WJ .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (08) :791-798