Preexisting systemic acquired resistance suppresses hypersensitive response-associated cell death in Arabidopsis hrl1 mutant

被引:52
作者
Devadas, SK
Raina, R [1 ]
机构
[1] Penn State Univ, Dept Biol, Inst Biotechnol, University Pk, PA 16802 USA
[2] Penn State Univ, Intercoll Grad Program Plant Physiol, University Pk, PA 16802 USA
关键词
D O I
10.1104/pp.010941
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The hypersensitive response (HR) displayed by resistant plants against invading pathogens is a prominent feature of plant-pathogen interactions. The Arabidopsis hypersensitive response like lesions1 (hrl1) mutant is characterized by heightened defense responses that make it more resistant to virulent pathogens. However, hrl1 suppresses avirulent pathogen-induced HR cell death. Furthermore, the high PR-1 expression observed in hrl1 retrains unaltered after avirulent and virulent pathogen infections. The suppressed HR phenotype in hrl1 is observed even when an elicitor is expressed endogenously from an inducible promoter, suggesting that an impaired transfer of avirulent factors is not the reason. Interestingly, the lack of HR phenotype in lull is reversed if the constitutive defense responses are compromised either by a mutation in NON EXPRESSOR OF PR-1 (NPR1) or by depleting salicylic acid due to the expression of the nahG gene. The rescue of HR cell death in hrl1 npr1 and in lull nahG depends on the extent to which the constitutive systemic acquired response (SAR) is compromised. Pretreating Arabidopsis wild-type plants with SAR-inducers, before pathogen infection resulted in a significant decrease in HR cell death. Together, these results demonstrate that the preexisting SAR may serve as one form of negative feedback loop to regulate HR-associated cell death in lull mutant and in the wild-type plants.
引用
收藏
页码:1234 / 1244
页数:11
相关论文
共 48 条
[1]   The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death [J].
Alfano, JR ;
Collmer, A .
JOURNAL OF BACTERIOLOGY, 1997, 179 (18) :5655-5662
[2]   Syringolide 1 triggers Ca2+ influx, K+ efflux, and extracellular alkalization in soybean cells carrying the disease-resistance gene Rpg4 [J].
Atkinson, MM ;
Midland, SL ;
Sims, JJ ;
Keen, NT .
PLANT PHYSIOLOGY, 1996, 112 (01) :297-302
[3]   INVOLVEMENT OF PLASMA-MEMBRANE CALCIUM INFLUX IN BACTERIAL INDUCTION OF THE K+/H+ AND HYPERSENSITIVE RESPONSES IN TOBACCO [J].
ATKINSON, MM ;
KEPPLER, LD ;
ORLANDI, EW ;
BAKER, CJ ;
MISCHKE, CF .
PLANT PHYSIOLOGY, 1990, 92 (01) :215-221
[4]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[5]  
Bent AF, 1996, PLANT CELL, V8, P1757, DOI 10.1105/tpc.8.10.1757
[6]   The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response [J].
Boyes, DC ;
Nam, J ;
Dangl, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (26) :15849-15854
[7]   The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats [J].
Cao, H ;
Glazebrook, J ;
Clarke, JD ;
Volko, S ;
Dong, XN .
CELL, 1997, 88 (01) :57-63
[8]  
CAO H, 1994, PLANT CELL, V6, P1583, DOI 10.1105/tpc.6.11.1583
[9]   NDR1, a pathogen-induced component required for Arabidopsis disease resistance [J].
Century, KS ;
Shapiro, AD ;
Repetti, PP ;
Dahlbeck, D ;
Holub, E ;
Staskawicz, BJ .
SCIENCE, 1997, 278 (5345) :1963-1965
[10]   NDR1, A LOCUS OF ARABIDOPSIS-THALIANA THAT IS REQUIRED FOR DISEASE RESISTANCE TO BOTH A BACTERIAL AND A FUNGAL PATHOGEN [J].
CENTURY, KS ;
HOLUB, EB ;
STASKAWICZ, BJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6597-6601