The energetics of aluminum solubility in.toMgSiCO3 perovskite at lower mantle conditions

被引:31
作者
Akber-Knutson, S [1 ]
Bukowinski, MST [1 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
aluminous perovskite; solid solutions; substitution mechanisms; configurational entropy;
D O I
10.1016/S0012-821X(04)00065-2
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Experiments [T. Irifune (1994) Nature 370, 131-133; E. Ito et al. (1998) Geophys. Res. Lett. 25, 821-824; A. Kubo, M. Akaogi (2000) Phys. Earth Planet. Int. 121, 85-102] indicate that (Mg,Fe)SiO3 perovskite, commonly believed to be the most abundant mineral in the Earth, is the preferred host phase of Al2O3 in the Earth's lower mantle. Aiming to better understand the effects of Al2O3 on the thermoelastic properties of the lower mantle, we use atomistic models to examine the chemistry and elasticity of solid solutions within the MgSiO3(perovskite)-Al2O3(corundum)-MgO(periclase) mineral assemblage under conditions pertinent to the lower mantle: low Al cation concentrations, P = 25-100 GPa, and T= 1000-2000 K. We assess the relative stabilities of two likely substitution mechanisms of Al into MgSiO3 perovskite in terms of reactions involving MgSiO3, MgO, and Al2O3, in a manner similar to the 0 Kelvin calculations of Brodholt [J.P. Brodholt (2000) Nature 407, 620-622] and Yamamoto et al. [T. Yamamoto et al. (2003) Earth Planet. Sci. Lett. 206, 617-625]. We determine the equilibrium composition of the assemblage by examining the chemical potentials of the Al2O3 and MgO components in solid solution with MgSiO3, as functions of concentration. We find that charge coupled substitution dominates at lower mantle pressures and temperatures. Oxygen vacancy-forming substitution accounts for 3-4% of Al substitution at shallow lower mantle conditions, and less than 1% in the deep mantle. For these two pressure regimes, the corresponding adiabatic bulk moduli of aluminous perovskite are 2% and 1% lower than that of pure MgSiO3 perovskite. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:317 / 330
页数:14
相关论文
共 35 条
[1]   HEAT-CAPACITY OF MGSIO3 PEROVSKITE [J].
AKAOGI, M ;
ITO, E .
GEOPHYSICAL RESEARCH LETTERS, 1993, 20 (02) :105-108
[2]   Calorimetric study on majorite-perovskite transition in the system Mg4Si4O12-Mg3Al2Si3O12:: transition boundaries with positive pressure-temperature slopes [J].
Akaogi, M ;
Ito, E .
PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1999, 114 (3-4) :129-140
[3]   Equation of state of lower mantle (Al,Fe)-MgSiO3 perovskite [J].
Andrault, D ;
Bolfan-Casanova, N ;
Guignot, N .
EARTH AND PLANETARY SCIENCE LETTERS, 2001, 193 (3-4) :501-508
[4]  
Balian R., 1982, MICROSCOPIQUE MACROS, V1
[5]   INTERNALLY-CONSISTENT THERMODYNAMIC DATA FOR MINERALS IN THE SYSTEM NA2O-K2O-CAO-MGO-FEO-FE2O3-AL2O3-SIO2-TIO2-H2O-CO2 [J].
BERMAN, RG .
JOURNAL OF PETROLOGY, 1988, 29 (02) :445-522
[6]   Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth's mantle [J].
Brodholt, JP .
NATURE, 2000, 407 (6804) :620-622
[7]  
CYNN H, 1990, AM MINERAL, V75, P439
[8]   Equation of state of Al-bearing perovskite to lower mantle pressure conditions [J].
Daniel, I ;
Cardon, H ;
Fiquet, G ;
Guyot, F ;
Mezouar, M .
GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (19) :3789-3792
[9]   P-V-T equation of state of periclase from synchrotron radiation measurements [J].
Dewaele, A ;
Fiquet, G ;
Andrault, D ;
Hausermann, D .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2000, 105 (B2) :2869-2877
[10]   High-pressure and high-temperature in situ X-ray diffraction study of iron and corundum to 68 GPa using an internally heated diamond anvil cell [J].
Dubrovinsky, LS ;
Saxena, SK ;
Lazor, P .
PHYSICS AND CHEMISTRY OF MINERALS, 1998, 25 (06) :434-441