A photoactive carotenoid protein acting as light intensity sensor

被引:278
作者
Wilson, Adjele [1 ,2 ]
Punginelli, Claire [1 ,2 ]
Gall, Andrew [1 ,2 ]
Bonetti, Cosimo [3 ]
Alexandre, Maxime [3 ]
Routaboul, Jean-Marc [4 ]
Kerfeld, Cheryl A. [5 ,6 ]
van Grondelle, Rienk [3 ]
Robert, Bruno [1 ,2 ]
Kennis, John T. M. [3 ]
Kirilovsky, Diana [1 ,2 ]
机构
[1] CEA Saclay, Inst Biol & Technol, F-91191 Gif Sur Yvette, France
[2] Ctr Natl Rech Sci, F-91191 Gif Sur Yvette, France
[3] Vrije Univ Amsterdam, Fac Sci, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[4] Inst Jean Pierre Bourgin, Inst Natl Rech Agron AgroParisTech, Lab Biol Semences, F-78026 Versailles, France
[5] Joint Genome Inst, United States Dept Energy, Walnut Creek, CA 94598 USA
[6] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
关键词
cyanobacteria; nonphotochemical quenching; photoprotection; phycobilisome;
D O I
10.1073/pnas.0804636105
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intense sunlight is dangerous for photosynthetic organisms. Cyanobacteria, like plants, protect themselves from light-induced stress by dissipating excess absorbed energy as heat. Recently, it was discovered that a soluble orange carotenoid protein, the OCP, is essential for this photoprotective mechanism. Here we show that the OCP is also a member of the family of photoactive proteins; it is a unique example of a photoactive protein containing a carotenoid as the photoresponsive chromophore. Upon illumination with blue-green light, the OCP undergoes a reversible transformation from its dark stable orange form to a red "active" form. The red form is essential for the induction of the photoprotective mechanism. The illumination induces structural changes affecting both the carotenoid and the protein. Thus, the OCP is a photoactive protein that senses light intensity and triggers photoprotection.
引用
收藏
页码:12075 / 12080
页数:6
相关论文
共 34 条
[1]   A simple artificial light-harvesting dyad as a model for excess energy dissipation in oxygenic photosynthesis [J].
Berera, R ;
Herrero, C ;
van Stokkum, IHM ;
Vengris, M ;
Kodis, G ;
Palacios, RE ;
van Amerongen, H ;
van Grondelle, R ;
Gust, D ;
Moore, TA ;
Moore, AL ;
Kennis, JTM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (14) :5343-5348
[2]  
DEMMINGADAMS B, 2002, SCIENCE, V298, P2179
[3]   Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803:: involvement of two different mechanisms [J].
El Bissati, K ;
Delphin, E ;
Murata, N ;
Etienne, AL ;
Kirilovsky, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1457 (03) :229-242
[4]   Mechanism of nonphotochemical quenching in green plants: Energies of the lowest excited singlet states of violaxanthin and zeaxanthin [J].
Frank, HA ;
Bautista, JA ;
Josue, JS ;
Young, AJ .
BIOCHEMISTRY, 2000, 39 (11) :2831-2837
[5]   Structural basis of a phototropin light switch [J].
Harper, SM ;
Neil, LC ;
Gardner, KH .
SCIENCE, 2003, 301 (5639) :1541-1544
[6]   Carotenoid cation formation and the regulation of photosynthetic light harvesting [J].
Holt, NE ;
Zigmantas, D ;
Valkunas, L ;
Li, XP ;
Niyogi, KK ;
Fleming, GR .
SCIENCE, 2005, 307 (5708) :433-436
[7]  
HOLT TK, 1981, BIOCHIM BIOPHYS ACTA, V637, P408
[8]   Regulation of light harvesting in green plants [J].
Horton, P ;
Ruban, AV ;
Walters, RG .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1996, 47 :655-684
[9]   Light-induced structural changes in the LOV2 domain of Adiantum phytochrome3 studied by low-temperature FTIR and UV-visible spectroscopy [J].
Iwata, T ;
Nozaki, D ;
Tokutomi, S ;
Kagawa, T ;
Wada, M ;
Kandori, H .
BIOCHEMISTRY, 2003, 42 (27) :8183-8191
[10]  
Kashino Y, 2001, ELECTROPHORESIS, V22, P1004, DOI 10.1002/1522-2683()22:6<1004::AID-ELPS1004>3.0.CO