Linear modes of gene expression determined by independent component analysis

被引:227
作者
Liebermeister, W
机构
[1] Humboldt Univ, Inst Biol, D-10115 Berlin, Germany
[2] Max Planck Inst Mol Genet, D-14195 Berlin, Germany
关键词
D O I
10.1093/bioinformatics/18.1.51
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The expression of genes is controlled by specific combinations of cellular variables. We applied Independent Component Analysis (ICA) to gene expression data, deriving a linear model based on hidden variables, which we term 'expression modes'. The expression of each gene is a linear function of the expression modes, where, according to the ICA model, the linear influences of different modes show a minimal statistical dependence, and their distributions deviate sharply from the normal distribution. Results: Studying cell cycle-related gene expression in yeast, we found that the dominant expression modes could be related to distinct biological functions, such as phases of the cell cycle or the mating response. Analysis of human lymphocytes revealed modes that were related to characteristic differences between cell types. With both data sets, the linear influences of the dominant modes showed distributions with large tails, indicating the existence of specifically up- and downregulated target genes. The expression modes and their influences can be used to visualize the samples and genes in low-dimensional spaces. A projection to expression modes helps to highlight particular biological functions, to reduce noise, and to compress the data in a biologically sensible way.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 23 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]  
[Anonymous], GENOME BIOL
[4]  
[Anonymous], [No title captured]
[5]  
[Anonymous], INDEPENDENT COMPONEN
[6]   Clustering gene expression patterns [J].
Ben-Dor, A ;
Shamir, R ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) :281-297
[7]   Regulatory element detection using correlation with expression [J].
Bussemaker, HJ ;
Li, H ;
Siggia, ED .
NATURE GENETICS, 2001, 27 (02) :167-171
[8]   A genome-wide transcriptional analysis of the mitotic cell cycle [J].
Cho, RJ ;
Campbell, MJ ;
Winzeler, EA ;
Steinmetz, L ;
Conway, A ;
Wodicka, L ;
Wolfsberg, TG ;
Gabrielian, AE ;
Landsman, D ;
Lockhart, DJ ;
Davis, RW .
MOLECULAR CELL, 1998, 2 (01) :65-73
[9]  
Cover T. M., 2005, ELEM INF THEORY, DOI 10.1002/047174882X
[10]  
D'haeseleer P, 1999, Pac Symp Biocomput, P41