An estimation theoretical characterization of coherent states

被引:32
作者
Fujiwara, A
Nagaoka, H
机构
[1] Osaka Univ, Dept Math, Osaka 5600043, Japan
[2] Univ Electrocommun, Grad Sch Informat Syst, Tokyo 1828585, Japan
关键词
D O I
10.1063/1.532962
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of quantum pure state models called the coherent models. A coherent model is an even-dimensional manifold of pure states whose tangent space is characterized by a symplectic structure. In a rigorous framework of noncommutative statistics, it is shown that a coherent model inherits and expands the original spirit of the minimum uncertainty property of coherent states. (C) 1999 American Institute of Physics. [S0022-2488(99)02509-8].
引用
收藏
页码:4227 / 4239
页数:13
相关论文
共 16 条
[1]   ATOMIC COHERENT STATES IN QUANTUM OPTICS [J].
ARECCHI, FT ;
THOMAS, H ;
GILMORE, R ;
COURTENS, E .
PHYSICAL REVIEW A, 1972, 6 (06) :2211-&
[2]   ON THE MEASUREMENT OF A WEAK CLASSICAL FORCE COUPLED TO A QUANTUM-MECHANICAL OSCILLATOR .1. ISSUES OF PRINCIPLE [J].
CAVES, CM ;
THORNE, KS ;
DREVER, RWP ;
SANDBERG, VD ;
ZIMMERMANN, M .
REVIEWS OF MODERN PHYSICS, 1980, 52 (02) :341-392
[3]  
Fujiwara A, 1996, N-HOLLAND D, P303
[4]   QUANTUM FISHER METRIC AND ESTIMATION FOR PURE STATE MODELS [J].
FUJIWARA, A ;
NAGAOKA, H .
PHYSICS LETTERS A, 1995, 201 (2-3) :119-124
[5]  
FUJIWARA A, 1994, 949 U TOK MATH ENG
[6]  
Guillemin V., 1984, Semi-Classical Analysis
[7]  
Helstrom C., 1976, QUANTUM DETECTION ES
[8]  
HOLEVO AS, 1982, PROBABILISTIC STAT A
[9]  
Klauder J. R, 1985, Coherent States
[10]  
Kobayashi S., 1969, Foundation of differential geometry, VII