Conservation and divergence of the yeast and mammalian unfolded protein response -: Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1

被引:42
作者
Foti, DM
Welihinda, A
Kaufman, RJ
Lee, AS [1 ]
机构
[1] Univ So Calif, Kenneth Norris Jr Comprehens Canc Ctr, Dept Biochem & Mol Biol, Sch Med, Los Angeles, CA 90089 USA
[2] Univ Michigan, Sch Med, Dept Biol Chem, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Howard Hughes Med Inst, Ann Arbor, MI 48109 USA
关键词
D O I
10.1074/jbc.274.43.30402
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Yeast Had (yHac1), the transcription factor that binds and activates the unfolded protein response element of endoplasmic reticulum (ER)-chaperone gene promoters, only accumulates in stressed cells after an unconventional splicesosome-free mRNA processing step and escape from translation block In determining whether the novel regulatory mechanisms for yHac1 are conserved in mammalian cells, we discovered a unique unfolded protein response element-like sequence within the endoplasmic reticulum stress element 163, one of the three ER stress elements recently identified in the rat grp78 promoter, The unspliced form of yHac1 is stably expressed in nonstressed mammalian cells and is as active as the spliced form in stimulating the promoter activities of grp genes. Further, the yHac1 mRNA is not processed in response to ER stress in mammalian cells. We identified a CCAGC motif as the yHac1 binding site, which is contained within a YY1 binding site previously shown to be important for mammalian UPR, Dissection of the yHac1 and the YY1 binding sites uncovered specific contact points for an activator protein predicted to be the mammalian homolog of yHac1, the activity of which can be stimulated by YY1. A model of the conserved and unique features of the yeast and mammalian unfolded protein response transcription machinery is proposed.
引用
收藏
页码:30402 / 30409
页数:8
相关论文
共 34 条