Insulin-like growth factor actions during development of neural stem cells and progenitors in the central nervous system

被引:69
作者
Ye, P [1 ]
D'Ercole, AJ [1 ]
机构
[1] Univ N Carolina, Dept Pediat, Chapel Hill, NC 27599 USA
关键词
IGF-I; CNS; neural stem cells; progenitors; signaling transduction; development;
D O I
10.1002/jnr.20688
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Insulin-like growth factor-I (IGF-I) plays a key role in normal development. Recent studies show that IGF-I exerts a wide variety actions in the central nervous system during development as well as in adulthood. This report reviews recent developments on IGF-I actions and its mechanisms in the central nervous system, with a focus on its actions during the development of neural stem cells and progenitors. Available data strongly indicate that IGF-I shortens the length of the cell cycle in neuron progenitors during embryonic life and has an influence on the growth of all neural cell types. The phosphatidylinositol-3 kinase/Akt and mitogen-activated protein kinase pathways seem to be the predominant mediators of IGF-I-stimulated neural cell proliferation and survival. IGF-I actions, however, likely depend on cell type, developmental stage, and microenvironmental milieu. (c) 2005 Wiley-Liss, Inc.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 67 条
[1]   IGF-I has a direct proliferative effect in adult hippocampal progenitor cells [J].
Åberg, MAI ;
Åberg, ND ;
Palmer, TD ;
Alborn, AM ;
Carlsson-Skwirut, C ;
Bang, P ;
Rosengren, LE ;
Olsson, T ;
Gage, FH ;
Eriksson, PS .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 24 (01) :23-40
[2]  
Åberg MAI, 2000, J NEUROSCI, V20, P2896
[3]   Insulin-like growth factor 1 is required for G2 progression in the estradiol-induced mitotic cycle [J].
Adesanya, OO ;
Zhou, J ;
Samathanam, C ;
Powell-Braxton, L ;
Bondy, CA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (06) :3287-3291
[4]   Insulin-like growth factor-I and central nervous system development [J].
Anlar, B ;
Sullivan, KA ;
Feldman, EL .
HORMONE AND METABOLIC RESEARCH, 1999, 31 (2-3) :120-125
[5]   Isolation of multipotent neural precursors residing in the cortex of the adult human brain [J].
Arsenijevic, Y ;
Villemure, JG ;
Brunet, JF ;
Bloch, JJ ;
Déglon, N ;
Kostic, C ;
Zurn, A ;
Aebischer, P .
EXPERIMENTAL NEUROLOGY, 2001, 170 (01) :48-62
[6]  
Arsenijevic Y, 1998, J NEUROSCI, V18, P2118
[7]   Insulin-like growth factor-1 is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2 [J].
Arsenijevic, Y ;
Weiss, S ;
Schneider, B ;
Aebischer, P .
JOURNAL OF NEUROSCIENCE, 2001, 21 (18) :7194-7202
[8]  
BAKER J, 1993, CELL, V75, P73, DOI 10.1016/0092-8674(93)90680-O
[9]   IGF1 GENE DISRUPTION RESULTS IN REDUCED BRAIN SIZE, CNS HYPOMYELINATION, AND LOSS OF HIPPOCAMPAL GRANULE AND STRIATAL PARVALBUMIN-CONTAINING NEURONS [J].
BECK, KD ;
POWELLBRAXTON, L ;
WIDMER, HR ;
VALVERDE, J ;
HEFTI, F .
NEURON, 1995, 14 (04) :717-730
[10]   Signaling by insulin-like growth factor 1 in brain [J].
Bondy, CA ;
Cheng, CM .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2004, 490 (1-3) :25-31