Values of Brownian intersection exponents III: Two-sided exponents

被引:109
作者
Lawler, GF
Schramm, O
Werner, W
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Microsoft Corp, Redmond, WA 98052 USA
[3] Univ Paris 11, Dept Math, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2002年 / 38卷 / 01期
关键词
D O I
10.1016/S0246-0203(01)01089-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper determines values of intersection exponents between packs of planar Brownian motions in the half-plane and in the plane that were not derived in our first two papers. For instance, it is proven that the exponent xi(3, 3) describing the asymptotic decay of the probability of non-intersection between two packs of three independent planar Brownian motions each is (73-2root73)/12. More generally, the values of xi(w(1),...w(k)) and (ξ) over tilde (w(1)'...,w(k)') are determined for all k greater than or equal to 2, w(1), w(2) greater than or equal to 1, w(3),...,w(k) is an element of [0, infinity) and all w(1)',...,w(k)' is an element of [0, infinity). The proof relies on the results derived in our first two papers and applies the same general methods. We first find the two-sided exponents for the stochastic Loewner evolution processes in a half-plane, from which the Brownian intersection exponents are determined via a universality argument. (C) 2002 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:109 / 123
页数:15
相关论文
共 6 条
[1]  
AHLFORS LV, 1973, TOPICS GEOMETRIC FUN
[2]   Intersection exponents for planar Brownian motion [J].
Lawler, GF ;
Werner, W .
ANNALS OF PROBABILITY, 1999, 27 (04) :1601-1642
[3]  
LAWLER GF, 2000, IN PRESS ACTA MATH
[4]  
LAWLER GF, 2000, J EUR MATH SOC, V2, P291
[5]  
LAWLER GF, 1999, IN PRESS ACTA MATH
[6]   Scaling limits of loop-erased random walks and uniform spanning trees [J].
Schramm, O .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) :221-288