An analysis of signatures of selective sweeps in natural populations of the house mouse

被引:85
作者
Ihle, S [1 ]
Ravaoarimanana, I [1 ]
Thomas, M [1 ]
Tautz, D [1 ]
机构
[1] Univ Cologne, Inst Genet, D-5000 Cologne, Germany
关键词
microsatellites; Mus musculus musculus; Mus musculus domesticus; natural populations; D-loop sequences; beta-defensin; 6;
D O I
10.1093/molbev/msj096
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Population and locus-specific reduction of variability of polymorphic loci could be an indication of positive selection at a linked site (selective sweep) and therefore point toward genes that have been involved in recent adaptations. Analysis of microsatellite variability offers a way to identify such regions and to ask whether they occur more often than expected by chance. We studied four populations of the house mouse (Mus musculus) to assess the frequency of such signatures of selective sweeps under natural conditions. Three samples represent the subspecies Mus mus domesticus and came from Germany, France, and Cameroon. One sample came from Kazakhstan and constitutes a population of the subspecies Mus mus musculus. Mitochondrial D-loop sequences from all animals confirm their respective assignments. Approximately 200 microsatellite loci were typed for up to 60 unrelated individuals from each population and evaluated for signs of selective sweeps on the basis of Schlotterer's ln RV and ln RH statistics. Our data suggest that there are slightly more signs of selective sweeps than would have been expected by chance alone in each of the populations and also highlights some of the statistical challenges faced in genome scans for detecting selection. Single-nucleotide polymorphism typing of one sweep signature in the M. m. domesticus populations around the beta-defensin 6 locus confirms a lowered nucleotide diversity in this region and limits the potential sweep region to about 20 kb. However, no amino acid exchange has occurred in the coding region when compared to M. m. musculus. If this sweep signature is due to a recent adaptation, it is expected that a regulatory change would have caused it. Our data provide a framework for conducting a systematic whole genome scan for signatures of selective sweeps in the mouse genome.
引用
收藏
页码:790 / 797
页数:8
相关论文
共 34 条
[1]  
[Anonymous], 2000, ARLEQUIN SOFTWARE PO
[2]   Signatures of natural selection in the human genome [J].
Bamshad, M ;
Wooding, SP .
NATURE REVIEWS GENETICS, 2003, 4 (02) :99-111A
[3]   LIFE-HISTORY AND BIOECONOMY OF THE HOUSE MOUSE [J].
BERRY, RJ ;
BRONSON, FH .
BIOLOGICAL REVIEWS, 1992, 67 (04) :519-550
[4]   THE EVOLUTION OF HOUSE MICE [J].
BOURSOT, P ;
AUFFRAY, JC ;
BRITTONDAVIDIAN, J ;
BONHOMME, F .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1993, 24 :119-152
[5]   HIGH-RESOLUTION OF HUMAN EVOLUTIONARY TREES WITH POLYMORPHIC MICROSATELLITES [J].
BOWCOCK, AM ;
RUIZLINARES, A ;
TOMFOHRDE, J ;
MINCH, E ;
KIDD, JR ;
CAVALLISFORZA, LL .
NATURE, 1994, 368 (6470) :455-457
[6]   First occurrence of the house mouse (Mus musculus domesticus Schwarz & Schwarz, 1943) in the Western Mediterranean:: a zooarchaeological revision of subfossil occurrences [J].
Cucchi, T ;
Vigne, JD ;
Auffray, JC .
BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2005, 84 (03) :429-445
[7]   MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets [J].
Dieringer, D ;
Schlotterer, C .
MOLECULAR ECOLOGY NOTES, 2003, 3 (01) :167-169
[8]   A comprehensive genetic map of the mouse genome [J].
Dietrich, WF ;
Miller, J ;
Steen, R ;
Merchant, MA ;
DamronBoles, D ;
Husain, Z ;
Dredge, R ;
Daly, MJ ;
Ingalls, KA ;
OConnor, TJ ;
Evans, CA ;
DeAngelis, MM ;
Levinson, DM ;
Kruglyak, L ;
Goodman, N ;
Copeland, NG ;
Jenkins, NA ;
Hawkins, TL ;
Stein, L ;
Page, DC ;
Lander, ES .
NATURE, 1996, 380 (6570) :149-152
[9]   Selective sweeps in the human genome: A starting point for identifying genetic differences between modern humans and chimpanzees [J].
Diller, KC ;
Gilbert, WA ;
Kocher, TD .
MOLECULAR BIOLOGY AND EVOLUTION, 2002, 19 (12) :2342-2345
[10]  
Fay JC, 2000, GENETICS, V155, P1405