D-optimal experimental design applied to a linear magnetostatic inverse problem

被引:15
作者
Bégot, S
Voisin, E
Hiebel, P
Artioukhine, E
Kauffmann, JM
机构
[1] IGE, Lab Elect Electotech & Syst, F-90000 Belfort, France
[2] IGE, Ctr Rech Ecoulements Surface & Transferts, F-90000 Belfort, France
[3] ALSTOM Ind, F-90000 Belfort, France
关键词
D-optimal experimental design; inverse problems; MRI; parameter estimation;
D O I
10.1109/20.996273
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the use of D-optimal experimental design to improve the accuracy of the solutions of inverse problems in magnetostatics. This method is applied to the following inverse problem: finding the current density on the basis of magnetic field measurements. The basic idea is to choose the measurement point positions to build a D-optimal experiment, then to solve the inverse problem by iterative regularization. The algorithms used are discussed. Numerical results that show the large improvement in the accuracy of the solutions are presented.
引用
收藏
页码:1065 / 1068
页数:4
相关论文
共 9 条
[1]  
Alifanov O. M., 1995, EXTREME METHODS SOLV
[2]  
Atkinson A.C., 1992, OPTIMUM EXPT DESIGNS
[3]   Resolution of linear magnetostatic inverse problem using iterative regularization [J].
Bégot, S ;
Voisin, E ;
Hiebel, P ;
Kauffmann, JM ;
Artioukhine, E .
EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2000, 12 (02) :123-131
[4]  
BEGOT S, 2000, P CEFC MILW WI JUN 4, P188
[5]  
FEDOROV VV, 1972, THEORY OPTIMIAL EXPT
[6]  
Jackson J. D., 1975, CLASSICAL ELECTRODYN
[7]  
PRESS WH, 1986, NUMERICAL RECIPES PA
[8]  
Tikhonov A.N., 1995, Numerical Methods for the Solution of Ill-Posed Problems, V328
[9]  
Tikhonov A. N., 1974, Methods for Solving Ill-Posed Problems