Temperature-dependent shade avoidance involves the receptor-like kinase ERECTA

被引:58
作者
Patel, Dhaval [1 ]
Basu, Manojit [2 ]
Hayes, Scott [1 ]
Majlath, Imre [3 ]
Hetherington, Flora M. [1 ]
Tschaplinski, Timothy J. [2 ]
Franklin, Keara A. [1 ]
机构
[1] Univ Bristol, Sch Biol Sci, Bristol BS8 1UG, Avon, England
[2] Oak Ridge Natl Lab, Biosci Div, Oak Ridge, TN 37831 USA
[3] Hungarian Acad Sci, Agr Res Ctr, Dept Plant Physiol, HU-2462 Martonvasar, Hungary
关键词
shade avoidance; temperature; Arabidopsis thaliana; phytochrome; R:FR; ERECTA; DIFFERENTIAL PETIOLE GROWTH; INTERACTING FACTOR 4; ARABIDOPSIS-THALIANA; FREEZING TOLERANCE; PHYTOCHROME-B; INFLORESCENCE ARCHITECTURE; FLOWERING TIME; BLUE-LIGHT; AUXIN; GENE;
D O I
10.1111/tpj.12088
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far-red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20 degrees C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16 degrees C). In these conditions, Arabidopsis thaliana displays considerable low R:FR-mediated increases in leaf area, with reduced low R:FR-mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16 degrees C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16 degrees C have revealed a regulatory role for the receptor-like kinase ERECTA.
引用
收藏
页码:980 / 992
页数:13
相关论文
共 79 条
[1]   Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis [J].
Alonso-Blanco, C ;
Gomez-Mena, C ;
Llorente, F ;
Koornneef, M ;
Salinas, J ;
Martínez-Zapater, JM .
PLANT PHYSIOLOGY, 2005, 139 (03) :1304-1312
[2]   Phenotypic plasticity and growth temperature: understanding interspecific variability [J].
Atkin, OK ;
Loveys, BR ;
Atkinson, LJ ;
Pons, TL .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (02) :267-281
[3]   Potent induction of Arabidopsis thaliana flowering by elevated growth temperature [J].
Balasubramanian, Sureshkumar ;
Sureshkumar, Sridevi ;
Lempe, Janne ;
Weigel, Detlef .
PLOS GENETICS, 2006, 2 (07) :980-989
[4]   PHOTOCONTROL OF STEM ELONGATION IN PLANT NEIGHBORHOODS - EFFECTS OF PHOTON FLUENCE RATE UNDER NATURAL CONDITIONS OF RADIATION [J].
BALLARE, CL ;
SCOPEL, AL ;
SANCHEZ, RA .
PLANT CELL AND ENVIRONMENT, 1991, 14 (01) :57-65
[5]   FAR-RED RADIATION REFLECTED FROM ADJACENT LEAVES - AN EARLY SIGNAL OF COMPETITION IN PLANT CANOPIES [J].
BALLARE, CL ;
SCOPEL, AL ;
SANCHEZ, RA .
SCIENCE, 1990, 247 (4940) :329-332
[6]  
BALLARE CL, 1987, PLANT CELL ENVIRON, V10, P551, DOI 10.1111/j.1365-3040.1987.tb01835.x
[7]   A thermosensory pathway controlling flowering time in Arabidopsis thaliana [J].
Blázquez, MA ;
Ahn, JH ;
Weigel, D .
NATURE GENETICS, 2003, 33 (02) :168-171
[8]   Differential genetic variation in adaptive strategies to a common environmental signal in Arabidopsis accessions:: phytochrome-mediated shade avoidance [J].
Botto, JF ;
Smith, H .
PLANT CELL AND ENVIRONMENT, 2002, 25 (01) :53-63
[9]   Integration of low temperature and light signaling during cold acclimation response in Arabidopsis [J].
Catala, Rafael ;
Medina, Joaquin ;
Salinas, Julio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (39) :16475-16480
[10]   Regulation of flowering time by light quality [J].
Cerdán, PD ;
Chory, J .
NATURE, 2003, 423 (6942) :881-885