Role of the LBB condition in weak spectral projection methods

被引:21
作者
Auteri, F
Guermond, JL
Parolini, N
机构
[1] Politecn Milan, Dipartimento Ingn Aerospaziale, I-20158 Milan, Italy
[2] CNRS, Lab Informat Mecan & Sci Ingenieur, F-91403 Orsay, France
[3] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1006/jcph.2001.6922
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper investigates the relevance of the Ladyshenskaya-Babuska-Brezzi condition in spectral projection methods. We consider the stability and convergence properties for a first-order nonincremental projection method and a second-order incremental projection method, both based on a spectral Galerkin-Leggendre spatial discretization. We show that the convergence of both projection methods is controlled by the ability of the spectral framework to approximate correctly the steady Stokes problem. (C) 2001 Elsevier Science.
引用
收藏
页码:405 / 420
页数:16
相关论文
共 33 条
[1]  
[Anonymous], 1974, RAIRO ANAL NUMER
[2]   Galerkin spectral method for the vorticity and stream function equations [J].
Auteri, F ;
Quartapelle, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 149 (02) :306-332
[3]  
AUTERI F, IN PRESS J COMPUT PH
[4]  
AZAIEZ M, 1990, THESIS U PARIS 11 OR
[5]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[6]  
Bernardi Christine., 1992, APPROXIMATIONS SPECT
[7]   Benchmark spectral results on the lid-driven cavity flow [J].
Botella, O ;
Peyret, R .
COMPUTERS & FLUIDS, 1998, 27 (04) :421-433
[8]   On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time [J].
Botella, O .
COMPUTERS & FLUIDS, 1997, 26 (02) :107-116
[9]  
Brezzi F., 1991, SPRINGER SERIES COMP, V15
[10]   ANALYTICAL AND NUMERICAL STUDIES OF STRUCTURE OF STEADY SEPARATED FLOWS [J].
BURGGRAF, OR .
JOURNAL OF FLUID MECHANICS, 1966, 24 :113-&