A cardiac dihydropyridine receptor II-III loop peptide inhibits resting Ca2+ sparks in ferret ventricular myocytes

被引:19
作者
Li, YX [1 ]
Bers, DM [1 ]
机构
[1] Loyola Univ, Stritch Sch Med, Dept Physiol, Maywood, IL 60153 USA
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2001年 / 537卷 / 01期
关键词
D O I
10.1111/j.1469-7793.2001.0017k.x
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. We studied the effect of a peptide (Ac-10C) on cardiac ryanodine receptor (RyR) opening. This decapeptide (KKERKLARTA) is a fragment of the cardiac dihydropyridine receptor (DHPR) from the cytosolic loop between the second and third transmembrane domains (II-III loop). Studies were carried out in ferret ventricular myocytes by simultaneously applying ruptured-patch voltage clamp and line-scan confocal microscopy with fluo-3 to measure intracellular [Ca2+] ([Ca2+](i)) and Ca2+ sparks. 2. Inclusion of Ac-10C in the dial sing pipette solution inhibited resting Ca2+ spark frequency (due to diastolic RyR openings) by > 50 %. This occurred without changing sarcoplasmic reticulum (SR) Ca2+ content, which was measured via the caffeine-induced Ca2+ transient amplitude and the caffeine-induced Na+-Ca2+ exchange current (I-NCX) integral. Ac-10C also reduced slightly the size of Ca2+ sparks. 3. Ac-10C did not alter either resting [Ca2+](i) (assessed by indo-1 fluorescence) or DHPR gating (measured as L-type Ca2+ current). 4 The SR Ca2+ fractional release was depressed by Ac-10C at relatively low SR Ca2+ content, but not at higher SR Ca2+ content. 5. A control scrambled peptide (Ac-10CS) did not alter any of the measured parameters (notably Ca2+ spark frequency or SR Ca2+ fractional release). Thus, the Ac-10C effects may be sequence or charge distribution specific. 6. Our results suggest an inhibitory regulation of RyRs at rest via the cardiac DHPR II-III loop N-terminus region. The mechanism of the effect and whether this interaction is important in cardiac excitation-contraction coupling (E-C coupling) per se, requires further investigation.
引用
收藏
页码:17 / 26
页数:10
相关论文
共 49 条
[1]   CALIBRATION OF INDO-1 AND RESTING INTRACELLULAR [CA](I) IN INTACT RABBIT CARDIAC MYOCYTES [J].
BASSANI, JWM ;
BASSANI, RA ;
BERS, DM .
BIOPHYSICAL JOURNAL, 1995, 68 (04) :1453-1460
[2]   FRACTIONAL SR CA RELEASE IS REGULATED BY TRIGGER CA AND SR CA CONTENT IN CARDIAC MYOCYTES [J].
BASSANI, JWM ;
YUAN, WL ;
BERS, DM .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 1995, 268 (05) :C1313-C1319
[3]   RELAXATION IN FERRET VENTRICULAR MYOCYTES - UNUSUAL INTERPLAY AMONG CALCIUM-TRANSPORT SYSTEMS [J].
BASSANI, RA ;
BASSANI, JWM ;
BERS, DM .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 476 (02) :295-308
[4]   RATIO OF RYANODINE TO DIHYDROPYRIDINE RECEPTORS IN CARDIAC AND SKELETAL-MUSCLE AND IMPLICATIONS FOR E-C COUPLING [J].
BERS, DM ;
STIFFEL, VM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1993, 264 (06) :C1587-C1589
[5]   Calcium fluxes involved in control of cardiac myocyte contraction [J].
Bers, DM .
CIRCULATION RESEARCH, 2000, 87 (04) :275-281
[6]  
BERS DM, 2001, EXCITATION CONTRACTI, P1
[7]   STRUCTURAL EVIDENCE FOR DIRECT INTERACTION BETWEEN THE MOLECULAR-COMPONENTS OF THE TRANSVERSE TUBULE SARCOPLASMIC-RETICULUM JUNCTION IN SKELETAL-MUSCLE [J].
BLOCK, BA ;
IMAGAWA, T ;
CAMPBELL, KP ;
FRANZINIARMSTRONG, C .
JOURNAL OF CELL BIOLOGY, 1988, 107 (06) :2587-2600
[8]   Amplitude distribution of calcium sparks in confocal images:: Theory and studies with an automatic detection method [J].
Cheng, H ;
Song, LS ;
Shirokova, N ;
González, A ;
Lakatta, EG ;
Ríos, E ;
Stern, MD .
BIOPHYSICAL JOURNAL, 1999, 76 (02) :606-617
[9]   Excitation-contraction coupling in heart: New insights from Ca2+ sparks [J].
Cheng, H ;
Lederer, MR ;
Xiao, RP ;
Gomez, AM ;
Zhou, YY ;
Ziman, B ;
Spurgeon, H ;
Lakatta, EG ;
Lederer, WJ .
CELL CALCIUM, 1996, 20 (02) :129-140
[10]   CALCIUM SPARKS - ELEMENTARY EVENTS UNDERLYING EXCITATION-CONTRACTION COUPLING IN HEART-MUSCLE [J].
CHENG, H ;
LEDERER, WJ ;
CANNELL, MB .
SCIENCE, 1993, 262 (5134) :740-744