Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries

被引:421
作者
Sun, Liang
Qiu, Keqiang [1 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
关键词
Lithium-ion battery; Valuable metals; Oxalate; Leaching; Precipitation; LIQUID-LIQUID-EXTRACTION; HYDROMETALLURGICAL PROCESS; SECONDARY BATTERIES; COBALT OXIDE; RECYCLING PROCESS; LI; SEPARATION; LICOO2; WASTE; CATHODES;
D O I
10.1016/j.wasman.2012.03.027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spent lithium-ion batteries containing lots of strategic resources such as cobalt and lithium are considered as an attractive secondary resource. In this work, an environmentally compatible process based on vacuum pyrolysis, oxalate leaching and precipitation is applied to recover cobalt and lithium from spent lithium-ion batteries. Oxalate is introduced as leaching reagent meanwhile as precipitant which leaches and precipitates cobalt from LiCoO2 and CoO directly as CoC2O4 center dot 2H(2)O with 1.0 M oxalate solution at 80 degrees C and solid/liquid ratio of 50 g L-1 for 120 min. The reaction efficiency of more than 98% of LiCoO2 can be achieved and cobalt and lithium can also be separated efficiently during the hydrometallurgical process. The combined process is simple and adequate for the recovery of valuable metals from spent lithium-ion batteries. Crown Copyright (c) 2012 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1575 / 1582
页数:8
相关论文
共 40 条
[1]   Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate [J].
Ahmed, Jahangeer ;
Ahmad, Tokeer ;
Ramanujachary, Kandalam V. ;
Lofland, Samuel E. ;
Ganguli, Ashok K. .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2008, 321 (02) :434-441
[2]   Advances in the recovering of spent lithium battery compounds [J].
Castillo, S ;
Ansart, F ;
Laberty-Robert, C ;
Portal, J .
JOURNAL OF POWER SOURCES, 2002, 112 (01) :247-254
[3]   Process for the recovery of cobalt oxalate from spent lithium-ion batteries [J].
Chen, Liang ;
Tang, Xincun ;
Zhang, Yang ;
Li, Lianxing ;
Zeng, Zhiwen ;
Zhang, Yi .
HYDROMETALLURGY, 2011, 108 (1-2) :80-86
[4]   A laboratory-scale lithium-ion battery recycling process [J].
Contestabile, M ;
Panero, S ;
Scrosati, B .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :65-69
[5]   A study of the separation of cobalt from spent Li-ion battery residues [J].
Dorella, Germano ;
Mansur, Marcelo Borges .
JOURNAL OF POWER SOURCES, 2007, 170 (01) :210-215
[6]   An overview on the current processes for the recycling of batteries [J].
Espinosa, DCR ;
Bernardes, AM ;
Tenório, JAS .
JOURNAL OF POWER SOURCES, 2004, 135 (1-2) :311-319
[7]   Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries [J].
Ferreira, Daniel Alvarenga ;
Zimmer Prados, Luisa Martins ;
Majuste, Daniel ;
Mansur, Marcelo Borges .
JOURNAL OF POWER SOURCES, 2009, 187 (01) :238-246
[8]   A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries [J].
Fouad, O. A. ;
Farghaly, F. I. ;
Bahgat, M. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2007, 78 (01) :65-69
[9]   Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries [J].
Freitas, M. B. J. G. ;
Garcia, E. M. .
JOURNAL OF POWER SOURCES, 2007, 171 (02) :953-959
[10]   Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits [J].
Freitas, M. B. J. G. ;
Celante, V. G. ;
Pietre, M. K. .
JOURNAL OF POWER SOURCES, 2010, 195 (10) :3309-3315