Epoxy infiltration into nanoporous aluminum oxide

被引:2
作者
Arayasantiparb, D
McKnight, S
Libera, M
机构
[1] Stevens Inst Technol, Dept Chem Biochem & Mat Engn, Hoboken, NJ 07030 USA
[2] USA, Res Lab, Aberdeen Proving Ground, MD USA
关键词
electron energy-loss spectroscopy; nanoporous aluminum oxide; DGEBA; PACM20; interphase; electron microscopy;
D O I
10.1080/00218460108030726
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This research uses spatially-resolved electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM) to study epoxy infiltration into a nanoporous aluminum surface oxide. Imaging by scanning electron microscopy (SEM) shows that the oxide surface of an as-anodized aluminum wire consists of columnar nanopores with diameters ranging from approximately 5 - 150 nm. Anodized wires were embedded in a 100 g: 28 g mixture of DGEBA (diglycidyl ether of bisphenol-A) resin and PACM20 (bis(p-aminocyclohexyl)methane) curing agent followed by a two-step cure. Electron-transparent sections were cut by ultramicrotomy. Spatially-resolved carbon and oxygen EELS profiles from the oxide are anti-correlated indicating that oxide pore walls are separated by pore interiors containing epoxy. Spatially-resolved low-loss spectral data are transformed into a measure of apparent specimen thickness. Comparisons of such data with simulations based on experimentally derived oxide topologies indicate that the pores are fully filled.
引用
收藏
页码:353 / 370
页数:18
相关论文
共 45 条