Associating microbiome composition with environmental covariates using generalized UniFrac distances

被引:743
作者
Chen, Jun [1 ]
Bittinger, Kyle [2 ]
Charlson, Emily S. [2 ,3 ]
Hoffmann, Christian [2 ]
Lewis, James [1 ,4 ]
Wu, Gary D. [4 ]
Collman, Ronald G. [2 ,3 ]
Bushman, Frederic D. [2 ]
Li, Hongzhe [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Dept Microbiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Div Allergy & Crit Care, Philadelphia, PA 19104 USA
[4] Univ Penn, Perelman Sch Med, Div Gastroenterol, Philadelphia, PA 19104 USA
关键词
GUT MICROBIOME; COMMUNITIES; DIVERSITY; METAGENOMICS;
D O I
10.1093/bioinformatics/bts342
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The human microbiome plays an important role in human disease and health. Identification of factors that affect the microbiome composition can provide insights into disease mechanism as well as suggest ways to modulate the microbiome composition for therapeutical purposes. Distance-based statistical tests have been applied to test the association of microbiome composition with environmental or biological covariates. The unweighted and weighted UniFrac distances are the most widely used distance measures. However, these two measures assign too much weight either to rare lineages or to most abundant lineages, which can lead to loss of power when the important composition change occurs in moderately abundant lineages. Results: We develop generalized UniFrac distances that extend the weighted and unweighted UniFrac distances for detecting a much wider range of biologically relevant changes. We evaluate the use of generalized UniFrac distances in associating microbiome composition with environmental covariates using extensive Monte Carlo simulations. Our results show that tests using the unweighted and weighted UniFrac distances are less powerful in detecting abundance change in moderately abundant lineages. In contrast, the generalized UniFrac distance is most powerful in detecting such changes, yet it retains nearly all its power for detecting rare and highly abundant lineages. The generalized UniFrac distance also has an overall better power than the joint use of unweighted/weighted UniFrac distances. Application to two real microbiome datasets has demonstrated gains in power in testing the associations between human microbiome and diet intakes and habitual smoking.
引用
收藏
页码:2106 / 2113
页数:8
相关论文
共 32 条
[1]   Enterotypes of the human gut microbiome [J].
Arumugam, Manimozhiyan ;
Raes, Jeroen ;
Pelletier, Eric ;
Le Paslier, Denis ;
Yamada, Takuji ;
Mende, Daniel R. ;
Fernandes, Gabriel R. ;
Tap, Julien ;
Bruls, Thomas ;
Batto, Jean-Michel ;
Bertalan, Marcelo ;
Borruel, Natalia ;
Casellas, Francesc ;
Fernandez, Leyden ;
Gautier, Laurent ;
Hansen, Torben ;
Hattori, Masahira ;
Hayashi, Tetsuya ;
Kleerebezem, Michiel ;
Kurokawa, Ken ;
Leclerc, Marion ;
Levenez, Florence ;
Manichanh, Chaysavanh ;
Nielsen, H. Bjorn ;
Nielsen, Trine ;
Pons, Nicolas ;
Poulain, Julie ;
Qin, Junjie ;
Sicheritz-Ponten, Thomas ;
Tims, Sebastian ;
Torrents, David ;
Ugarte, Edgardo ;
Zoetendal, Erwin G. ;
Wang, Jun ;
Guarner, Francisco ;
Pedersen, Oluf ;
de Vos, Willem M. ;
Brunak, Soren ;
Dore, Joel ;
Weissenbach, Jean ;
Ehrlich, S. Dusko ;
Bork, Peer .
NATURE, 2011, 473 (7346) :174-180
[2]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[3]  
Carr D., 2011, HEXBIN HEXAGONAL BIN
[4]   Variance adjusted weighted UniFrac: a powerful beta diversity measure for comparing communities based on phylogeny [J].
Chang, Qin ;
Luan, Yihui ;
Sun, Fengzhu .
BMC BIOINFORMATICS, 2011, 12
[5]   Disordered Microbial Communities in the Upper Respiratory Tract of Cigarette Smokers [J].
Charlson, Emily S. ;
Chen, Jun ;
Custers-Allen, Rebecca ;
Bittinger, Kyle ;
Li, Hongzhe ;
Sinha, Rohini ;
Hwang, Jennifer ;
Bushman, Frederic D. ;
Collman, Ronald G. .
PLOS ONE, 2010, 5 (12)
[6]   Functional metagenomic profiling of nine biomes [J].
Dinsdale, Elizabeth A. ;
Edwards, Robert A. ;
Hall, Dana ;
Angly, Florent ;
Breitbart, Mya ;
Brulc, Jennifer M. ;
Furlan, Mike ;
Desnues, Christelle ;
Haynes, Matthew ;
Li, Linlin ;
McDaniel, Lauren ;
Moran, Mary Ann ;
Nelson, Karen E. ;
Nilsson, Christina ;
Olson, Robert ;
Paul, John ;
Brito, Beltran Rodriguez ;
Ruan, Yijun ;
Swan, Brandon K. ;
Stevens, Rick ;
Valentine, David L. ;
Thurber, Rebecca Vega ;
Wegley, Linda ;
White, Bryan A. ;
Rohwer, Forest .
NATURE, 2008, 452 (7187) :629-U8
[7]  
Felsenstein J., 2004, INFERRING PHYTOGENIE
[8]  
Fukuyama J, 2012, BIOCOMPUT-PAC SYM, P213
[9]   Metagenomic analysis of the human distal gut microbiome [J].
Gill, Steven R. ;
Pop, Mihai ;
DeBoy, Robert T. ;
Eckburg, Paul B. ;
Turnbaugh, Peter J. ;
Samuel, Buck S. ;
Gordon, Jeffrey I. ;
Relman, David A. ;
Fraser-Liggett, Claire M. ;
Nelson, Karen E. .
SCIENCE, 2006, 312 (5778) :1355-1359
[10]   Topographical and Temporal Diversity of the Human Skin Microbiome [J].
Grice, Elizabeth A. ;
Kong, Heidi H. ;
Conlan, Sean ;
Deming, Clayton B. ;
Davis, Joie ;
Young, Alice C. ;
Bouffard, Gerard G. ;
Blakesley, Robert W. ;
Murray, Patrick R. ;
Green, Eric D. ;
Turner, Maria L. ;
Segre, Julia A. .
SCIENCE, 2009, 324 (5931) :1190-1192