Random design wavelet curve smoothing

被引:30
作者
Antoniadis, A [1 ]
Gregoire, G [1 ]
Vial, P [1 ]
机构
[1] UNIV GRENOBLE 1,LAB IMAG,LMC,F-38041 GRENOBLE 9,FRANCE
关键词
wavelets; multiresolution analysis; nonparametric regression estimation; binning; random design; Nadaraya-Watson estimate;
D O I
10.1016/S0167-7152(97)00017-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Common wavelet-based methods for nonparametric regression estimation are difficult to apply when the design is random. This paper proposes a modification of the linear wavelet estimator, called the binned wavelet estimator leading to a fast O(n) method with asymptotic properties identical with those of linear wavelet estimators under a fixed equidistant design. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 11 条
[1]  
Cohen A., 1993, Applied and Computational Harmonic Analysis, V1, P54, DOI 10.1006/acha.1993.1005
[2]  
FRAZIER M, 1991, REGIONAL C SERIES MA, V79
[3]  
Hardle W. K., 1992, Computational Statistics, V7, P97
[4]  
MACK YP, 1989, STAT PROBABIL LETT, V7, P195
[5]  
Nadaraya E.A., 1964, Theory Probab Its Appl, V9, P141, DOI [10.1137/1109020, DOI 10.1137/1109020]
[6]   SPLINE SMOOTHING IN REGRESSION-MODELS AND ASYMPTOTIC EFFICIENCY IN L2 [J].
NUSSBAUM, M .
ANNALS OF STATISTICS, 1985, 13 (03) :984-997
[7]  
RAO BLS, 1983, NONPARAMETRIC FUNCTI
[8]  
Rosenblatt M., 1969, MULTIVARIATE ANALYSI, P25
[9]   OPTIMAL GLOBAL RATES OF CONVERGENCE FOR NONPARAMETRIC REGRESSION [J].
STONE, CJ .
ANNALS OF STATISTICS, 1982, 10 (04) :1040-1053
[10]   The lifting scheme: A custom-design construction of biorthogonal wavelets [J].
Sweldens, W .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1996, 3 (02) :186-200