An algorithm for coarsening unstructured meshes

被引:64
作者
Bank, RE [1 ]
Xu, JC [1 ]
机构
[1] PENN STATE UNIV,DEPT MATH,UNIVERSITY PK,PA 16802
关键词
D O I
10.1007/s002110050181
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and analyze a procedure for creating a hierarchical basis of continuous piecewise linear polynomials on an arbitrary, unstructured, nonuniform triangular mesh. Using these hierarchical basis functions, we are able to define and analyze corresponding iterative methods for solving the linear systems arising from finite element discretizations of elliptic partial differential equations. We show that such iterative methods perform as well as those developed for the usual case of structured, locally refined meshes. In particular, we show that the generalized condition numbers for such iterative methods are of order J(2), where J is the number of hierarchical basis levels.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 31 条
[1]  
[Anonymous], CNA159 U TEX AUST
[2]  
Bank R. E., 1983, APPL MATH COMPUTING, P3
[3]   THE HIERARCHICAL BASIS MULTIGRID METHOD [J].
BANK, RE ;
DUPONT, TF ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :427-458
[4]  
BANK RE, 1995, NOTES NUMERICAL MATH, V49, P1
[5]  
BANK RE, 1994, P 7 INT S DOM DEC ME, P163
[6]  
BANK RE, 1994, LARGE SCALE MATRIX P, P121
[7]  
BANK RE, 1994, FRONTIERS APPL MATH
[8]   A BASIC NORM EQUIVALENCE FOR THE THEORY OF MULTILEVEL METHODS [J].
BORNEMANN, F ;
YSERENTANT, H .
NUMERISCHE MATHEMATIK, 1993, 64 (04) :455-476
[9]  
BRAMBLE JH, 1991, MATH COMPUT, V56, P1, DOI 10.1090/S0025-5718-1991-1052086-4
[10]  
BRAMBLE JH, 1990, MATH COMPUT, V55, P1, DOI 10.1090/S0025-5718-1990-1023042-6