Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates

被引:259
作者
Khan, H
Smit, A
Boissinot, S [1 ]
机构
[1] CUNY Queens Coll, Dept Biol, Flushing, NY 11367 USA
[2] Inst Syst Biol, Seattle, WA 98103 USA
[3] CUNY, Grad Sch, New York, NY 10016 USA
[4] CUNY, Univ Ctr, New York, NY 10016 USA
关键词
D O I
10.1101/gr.4001406
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated the evolution of the families of LINE-1 (L1) retrotransposons that have amplified in the human lineage since the origin of primates. We identified two phases in the evolution of L1. From similar to 70 million years ago (Mya) until similar to 40 Mya, three distinct L1 lineages were simultaneously active ill the genome of ancestral primates. In contrast, during the last 40 million years (Myr), i.e., during the evolution of anthropoid primates, a single lineage of families has evolved and amplified. We found that novel (i.e., Unrelated) regulatory regions (5'UTR) have been frequently recruited during the evolution of L1, whereas the two open-reading frames (ORF1 and ORF2) have remained relatively conserved. We found that L1 families coexisted and formed independently evolving 1 lineages only when they had different 5'UTRs. We propose that L1 families with different 5'UTR can coexist because they don't rely oil the same host-encoded factors for their transcription and therefore do not compete with each other. The most prolific L1 families (families L1PA8 to L1PA3) amplified between 40 and 12 Mya. This period of high activity corresponds to all episode of adaptive evolution in a segment of ORF1. The correlation between the high activity of L1 families and adaptive evolution Could result from the coevolution of L1 and a host-encoded repressor of L1 activity.
引用
收藏
页码:78 / 87
页数:10
相关论文
共 72 条
[1]  
ADEY NB, 1994, MOL BIOL EVOL, V11, P778
[2]   A YY1-binding site is required for accurate human LINE-1 transcription initiation [J].
Athanikar, JN ;
Badge, RM ;
Moran, JV .
NUCLEIC ACIDS RESEARCH, 2004, 32 (13) :3846-3855
[3]   BINDING OF THE UBIQUITOUS NUCLEAR TRANSCRIPTION FACTOR YY1 TO A CIS REGULATORY SEQUENCE IN THE HUMAN LINE-1 TRANSPOSABLE ELEMENT [J].
BECKER, KG ;
SWERGOLD, GD ;
OZATO, K ;
THAYER, RE .
HUMAN MOLECULAR GENETICS, 1993, 2 (10) :1697-1702
[4]   L1 (LINE-1) retrotransposon evolution and amplification in recent human history [J].
Boissinot, S ;
Chevret, P ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (06) :915-928
[5]   Selection against deleterious LINE-1-containing loci in the human lineage [J].
Boissinot, S ;
Entezam, A ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (06) :926-935
[6]   Different rates of LINE-1 (L1) retrotransposon amplification and evolution in new world monkeys [J].
Boissinot, SP ;
Roos, C ;
Furano, AV .
JOURNAL OF MOLECULAR EVOLUTION, 2004, 58 (01) :122-130
[7]   Adaptive evolution in LINE-1 retrotransposons [J].
Boissinot, SP ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (12) :2186-2194
[8]   CONSERVATION THROUGHOUT MAMMALIA AND EXTENSIVE PROTEIN-ENCODING CAPACITY OF THE HIGHLY REPEATED DNA LONG INTERSPERSED SEQUENCE ONE [J].
BURTON, FH ;
LOEB, DD ;
VOLIVA, CF ;
MARTIN, SL ;
EDGELL, MH ;
HUTCHISON, CA .
JOURNAL OF MOLECULAR BIOLOGY, 1986, 187 (02) :291-304
[9]   The human genome contains many types of chimeric retrogenes generated through in vivo RNA recombination [J].
Buzdin, A ;
Gogvadze, E ;
Kovalskaya, E ;
Volchkov, P ;
Ustyugova, S ;
Illarionova, A ;
Fushan, A ;
Vinogradova, T ;
Sverdlov, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (15) :4385-4390
[10]   A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3′ terminus of L1 [J].
Buzdin, A ;
Ustyugova, S ;
Gogvadze, E ;
Vinogradova, T ;
Lebedev, Y ;
Sverdlov, E .
GENOMICS, 2002, 80 (04) :402-406