Bayesian estimation of state-space models applied to deconvolution of Bernoulli-Gaussian processes

被引:33
作者
Doucet, A
Duvaut, P
机构
[1] CEN Saclay LETI/DEIN/SPE, Bâtiment 451
[2] ETIS - ENSEA Groupe Signal
关键词
Bayesian estimation; Markov chain Monte Carlo methods; Gibbs sampler; state-space models; Bernoulli-Gaussian processes; deconvolution;
D O I
10.1016/S0165-1684(96)00192-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we use stochastic simulation techniques to estimate the a posteriori density of the hidden-state process and hyperparameters of conditionally linear Gaussian state-space models. The estimation method relies on Markov chains Monte Carlo methods and more especially the Gibbs sampler. We apply this algorithm to non-blind and blind Bayesian deconvolution of Bernoulli-Gaussian processes. Convergence of the algorithm is established. In simulations, very satisfactory results are obtained. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:147 / 161
页数:15
相关论文
共 21 条
[1]  
Bernardo J. M., 1994, WILEY SERIES PROBABI
[2]  
BOUAHNIK JM, 1995, DECONVOLUTION BAYESI
[3]  
CARTER CK, 1994, BIOMETRIKA, V81, P541
[4]  
DEJONG P, 1995, BIOMETRIKA, V82, P339
[5]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[6]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363
[7]  
DOUCET A, 1996, P 9 EUR SIG C TRIEST
[8]  
Fruhwirth-Schnatter S, 1994, Journal of Time Series Analysis, V15, P183, DOI [10.1111/j.1467-9892.1994.tb00184.x], DOI 10.1111/J.1467-9892.1994.TB00184.X]
[9]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[10]   MAXIMUM-LIKELIHOOD DETECTION AND ESTIMATION OF BERNOULLI-GAUSSIAN PROCESSES [J].
KORMYLO, JJ ;
MENDEL, JM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (03) :482-488