Structural basis of innate immune recognition of viral RNA

被引:53
作者
Berke, Ian C. [1 ]
Li, Yue [1 ]
Modis, Yorgo [1 ]
机构
[1] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
关键词
TOLL-LIKE RECEPTOR-3; DOUBLE-STRANDED-RNA; RIG-I HELICASE; CPG-DNA; ANTIVIRAL RESPONSES; SIGNAL-TRANSDUCTION; CRYSTAL-STRUCTURE; TERMINAL DOMAINS; MDA5; ACTIVATION;
D O I
10.1111/cmi.12061
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Viral RNA is recognized by innate immune receptors from two different families. In endolysosomal compartments, Toll-like receptors (TLRs) 3, 7 and 8 recognize either double-stranded RNA (dsRNA) or single-stranded RNA. In the cytoplasm, viral genomic RNA or transcriptional intermediates are recognized by DExD/H-box helicases RIG-I and MDA5. Recent structural studies of these RNA sensors have provided atomic-level insight into the recognition mechanism of viral RNA. TLR3 dimerizes around a straight 45-bp stretch of dsRNA, explaining the length requirement of at least 40bp for dsRNA recognition. RIG-I recognizes blunt ends of dsRNA with 5-triphosphate caps. Ligand binding releases RIG-I from a closed autoinhibited state, exposing the CARD signalling domains. MDA5 recognizes long dsRNA by cooperatively assembling into helical filaments. RNA recognition by RIG-I and MDA5 triggers assembly of their common downstream signalling adaptor MAVS from its inactive monomeric form into its active polymeric form. While RIG-I and MDA5 appear to activate MAVS via distinct oligomerization mechanisms, a common paradigm is emerging in innate immunity for signal transduction by oligomerization-dependent signalling platforms. Many open questions remain including the role of proteolytic activation in RNA recognition by TLR3 and how unanchored ubiquitin chains contribute to RNA recognition by RIG-I and MDA5.
引用
收藏
页码:386 / 394
页数:9
相关论文
共 66 条
[1]  
Ahmad-Nejad P, 2002, EUR J IMMUNOL, V32, P1958, DOI 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO
[2]  
2-U
[3]   Pathogen recognition and innate immunity [J].
Akira, S ;
Uematsu, S ;
Takeuchi, O .
CELL, 2006, 124 (04) :783-801
[4]   Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 [J].
Alexopoulou, L ;
Holt, AC ;
Medzhitov, R ;
Flavell, RA .
NATURE, 2001, 413 (6857) :732-738
[5]   Regulation of Signal Transduction by Enzymatically Inactive Antiviral RNA Helicase Proteins MDA5, RIG-I, and LGP2 [J].
Bamming, Darja ;
Horvath, Curt M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (15) :9700-9712
[6]   Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition [J].
Bauer, S ;
Kirschning, CJ ;
Häcker, H ;
Redecke, V ;
Hausmann, S ;
Akira, S ;
Wagner, H ;
Lipford, GB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9237-9242
[7]   The molecular structure of the Toll-like receptor 3 ligand-binding domain [J].
Bell, JK ;
Botos, I ;
Hall, PR ;
Askins, J ;
Shiloach, J ;
Segal, DM ;
Davies, DR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) :10976-10980
[8]   MDA5 assembles into a polar helical filament on dsRNA [J].
Berke, Ian C. ;
Yu, Xiong ;
Modis, Yorgo ;
Egelman, Edward H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (45) :18437-18441
[9]   MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA [J].
Berke, Ian C. ;
Modis, Yorgo .
EMBO JOURNAL, 2012, 31 (07) :1714-1726
[10]  
Choe J, 2005, SCIENCE, V309, P581, DOI 10.1126/science.1115253