Two-dimensional infinite-system density-matrix renormalization-group algorithm

被引:16
作者
Henelius, P [1 ]
机构
[1] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[2] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
来源
PHYSICAL REVIEW B | 1999年 / 60卷 / 13期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.60.9561
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It has proved difficult to extend the density-matrix renormalization-group technique to large two-dimensional systems. I here present an approach where the calculation is done directly in two dimensions. This makes it possible to use an infinite-system method, and the fixed point in two dimensions is Studied. By applying several related blocking schemes to the two-dimensional Heisenberg model I find that there exists an algorithm for which the energy per site decreases monotonically as the system size increases, thereby showing the potential feasibility of this method. [S0163-1829(99)08937-7].
引用
收藏
页码:9561 / 9565
页数:5
相关论文
共 14 条
[1]   Density-matrix renormalization-group algorithm for quantum lattice systems with a large number of states per site [J].
Bursill, RJ .
PHYSICAL REVIEW B, 1999, 60 (03) :1643-1649
[2]  
CHANDRASEKHARAN S, UNPUB CONDMAT9902128
[3]   CORRELATED ELECTRONS IN HIGH-TEMPERATURE SUPERCONDUCTORS [J].
DAGOTTO, E .
REVIEWS OF MODERN PHYSICS, 1994, 66 (03) :763-840
[4]   Critical behavior of the two-dimensional Ising model in a transverse field: A density-matrix renormalization calculation [J].
de Jongh, MSLD ;
van Leeuwen, JMJ .
PHYSICAL REVIEW B, 1998, 57 (14) :8494-8500
[5]   APPROXIMATE DIAGONALIZATION USING THE DENSITY-MATRIX RENORMALIZATION-GROUP METHOD - A 2-DIMENSIONAL-SYSTEMS PERSPECTIVE [J].
LIANG, SD ;
PANG, HB .
PHYSICAL REVIEW B, 1994, 49 (13) :9214-9217
[6]   SIGN PROBLEM IN THE NUMERICAL-SIMULATION OF MANY-ELECTRON SYSTEMS [J].
LOH, EY ;
GUBERNATIS, JE ;
SCALETTAR, RT ;
WHITE, SR ;
SCALAPINO, DJ ;
SUGAR, RL .
PHYSICAL REVIEW B, 1990, 41 (13) :9301-9307
[7]  
OSTLUND S, 1995, PHYS REV LETT, V75, P3537, DOI 10.1103/PhysRevLett.75.3537
[8]   Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model [J].
Sandvik, AW .
PHYSICAL REVIEW B, 1997, 56 (18) :11678-11690
[9]   DENSITY-MATRIX FORMULATION FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2863-2866
[10]   REAL-SPACE QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR ;
NOACK, RM .
PHYSICAL REVIEW LETTERS, 1992, 68 (24) :3487-3490