The change-of-variables formula using matrix volume

被引:22
作者
Ben-Israel, A
机构
[1] Rutgers State Univ, Rutgers Ctr Operat Res, Piscataway, NJ 08854 USA
[2] Indian Stat Inst, New Delhi 110016, India
关键词
determinants; Jacobians; matrix volume; change-of-variables in integration; surface integrals; Radon transform; Fourier transform; generalized Pythagorean theorem;
D O I
10.1137/S0895479895296896
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The matrix volume is a generalization, to rectangular matrices, of the absolute value of the determinant. In particular, the matrix volume can be used in change-of-variables formulae, instead of the determinant (if the Jacobi matrix of the underlying transformation is rectangular). This result is applicable to integration on surfaces, illustrated here by several examples.
引用
收藏
页码:300 / 312
页数:13
相关论文
共 13 条
[1]  
[Anonymous], GRAD TEXTS MATH
[2]  
[Anonymous], CRELLE J REINE ANGEW
[3]   A VOLUME ASSOCIATED WITH MXN MATRICES [J].
BENISRAEL, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 167 :87-111
[4]  
Courant R., 1936, DIFFERENTIAL INTEGRA
[5]  
Deans S., 1983, RADON TRANSFORM SOME
[6]  
Federer H., 1969, GEOMETRIC MEASURE TH
[7]  
Fleming W., 1977, Functions of Several Variables, V2nd ed.
[8]  
Kendall M. G., 1961, GRIFFINS STAT MONOGR, V8
[9]  
LIN SYT, 1990, LINEAR MULTILINEAR A, V26, P9
[10]  
Muller C, 1966, LECT NOTES MATH, V17