Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels

被引:278
作者
Mahoney, MJ
Anseth, KS
机构
[1] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
关键词
neural regeneration; stem cells; tissue engineering; hydrogels;
D O I
10.1016/j.biomaterials.2005.11.007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Graft survival and integration are major factors that limit the efficacy of cell therapies for the treatment of disease and injury in the central nervous system. Efforts to improve cell survival and integration have focused in part on the development of biocompatible scaffolds that support neural cell growth and function. Here we photoencapsulate neural cells within degradable hydrogels and use confocal microscopy to non-invasively monitor these key, cell functions over time. By directly imaging fluorescently labeled cells we show that neural cells cultured within three-dimensional polymer networks create their own cellular microenvironment to survive, proliferate and differentiate and form neurons and glia that are electrophysiologically responsive to neurotransmitter. By changing the degradation rate of the polymer network, the time-scale over which neural cells extend processes throughout the hydrogel could be tuned on a time-scale that ranged from 1-3 weeks. These studies were carried out in the absence of serum and extracellular matrix molecules that can be immunogenic and identify degradable PEG hydrogels as suitable synthetic cell carriers for neural transplantation. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2265 / 2274
页数:10
相关论文
共 42 条
[1]  
AHMED S, 1995, J NEUROSCI, V15, P5765
[2]   Survival, neuronal differentiation, and fiber outgrowth of propagated human neural precursor grafts in an animal model of Huntington's disease [J].
Armstrong, RJE ;
Watts, C ;
Svendsen, CN ;
Dunnett, SB ;
Rosser, AE .
CELL TRANSPLANTATION, 2000, 9 (01) :55-64
[3]   Transplanted CNS stem cells form functional synapses in vivo [J].
Auerbach, JM ;
Eiden, MV ;
McKay, RDG .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2000, 12 (05) :1696-1704
[4]   Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures [J].
Balgude, AP ;
Yu, X ;
Szymanski, A ;
Bellamkonda, RV .
BIOMATERIALS, 2001, 22 (10) :1077-1084
[5]   CONTROLLED GROWTH-FACTOR DELIVERY INDUCES DIFFERENTIAL NEURITE OUTGROWTH IN 3-DIMENSIONAL CELL-CULTURES [J].
BEATY, CE ;
SALTZMAN, WM .
JOURNAL OF CONTROLLED RELEASE, 1993, 24 (1-3) :15-23
[6]   LAMININ OLIGOPEPTIDE DERIVATIZED AGAROSE GELS ALLOW 3-DIMENSIONAL NEURITE EXTENSION IN-VITRO [J].
BELLAMKONDA, R ;
RANIERI, JP ;
AEBISCHER, P .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 41 (04) :501-509
[7]   Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (01) :63-72
[8]   The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels [J].
Bryant, SJ ;
Anseth, KS .
BIOMATERIALS, 2001, 22 (06) :619-626
[9]   Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering [J].
Burdick, JA ;
Anseth, KS .
BIOMATERIALS, 2002, 23 (22) :4315-4323
[10]   Growth factors regulate the survival and fate of cells derived from human neurospheres [J].
Caldwell, MA ;
He, XL ;
Wilkie, N ;
Pollack, S ;
Marshall, G ;
Wafford, KA ;
Svendsen, CN .
NATURE BIOTECHNOLOGY, 2001, 19 (05) :475-479