Microenvironment driven invasion: a multiscale multimodel investigation

被引:74
作者
Anderson, Alexander R. A. [1 ]
Rejniak, Katarzyna A. [1 ]
Gerlee, Philip [1 ]
Quaranta, Vito [2 ]
机构
[1] Univ Dundee, Div Math, Dundee DD1 4HN, Scotland
[2] Vanderbilt Univ, Sch Med, Dept Canc Biol, Nashville, TN 37235 USA
关键词
CELLULAR-AUTOMATON MODEL; DIFFUSION-LIMITED AGGREGATION; TUMOR-GROWTH; MULTICELLULAR SPHEROIDS; MATHEMATICAL-MODEL; EPITHELIAL ACINI; CANCER; CELLS; PATTERNS; OXYGEN;
D O I
10.1007/s00285-008-0210-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer is a complex, multiscale process, in which genetic mutations occurring at a subcellular level manifest themselves as functional and morphological changes at the cellular and tissue scale. The importance of interactions between tumour cells and their microenvironment is currently of great interest in experimental as well as computational modelling. Both the immediate microenvironment (e.g. cell-cell signalling or cell-matrix interactions) and the extended microenvironment (e.g. nutrient supply or a host tissue structure) are thought to play crucial roles in both tumour progression and suppression. In this paper we focus on tumour invasion, as defined by the emergence of a fingering morphology, which has previously been shown to be dependent upon harsh microenvironmental conditions. Using three different modelling approaches at two different spatial scales we examine the impact of nutrient availability as a driving force for invasion. Specifically we investigate how cell metabolism (the intrinsic rate of nutrient consumption and cell resistance to starvation) influences the growing tumour. We also discuss how dynamical changes in genetic makeup and morphological characteristics, of the tumour population, are driven by extreme changes in nutrient supply during tumour development. The simulation results indicate that aggressive phenotypes produce tumour fingering in poor nutrient, but not rich, microenvironments. The implication of these results is that an invasive outcome appears to be co-dependent upon the evolutionary dynamics of the tumour population driven by the microenvironment.
引用
收藏
页码:579 / 624
页数:46
相关论文
共 89 条
[1]   A multiple scale model for tumor growth [J].
Alarcón, T ;
Byrne, HM ;
Maini, PK .
MULTISCALE MODELING & SIMULATION, 2005, 3 (02) :440-475
[2]   The tumour microenvironment as a target for chemoprevention [J].
Albini, Adriana ;
Sporn, Michael B. .
NATURE REVIEWS CANCER, 2007, 7 (02) :139-147
[3]  
Alexandrova R., 2001, Experimental Pathology and Parasitology, V4, P57
[4]  
Anderson A.R.A., 2000, J. Theor. Med, V2, DOI 10.1080/10273660008833042
[5]   Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment [J].
Anderson, Alexander R. A. ;
Weaver, Alissa M. ;
Cummings, Peter T. ;
Quaranta, Vito .
CELL, 2006, 127 (05) :905-915
[6]  
Anderson AR., 2003, POLYM CELL DYNAMICS
[7]   Continuous and discrete mathematical models of tumor-induced angiogenesis [J].
Anderson, ARA ;
Chaplain, MAJ .
BULLETIN OF MATHEMATICAL BIOLOGY, 1998, 60 (05) :857-899
[8]   A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion [J].
Anderson, ARA .
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA, 2005, 22 (02) :163-186
[9]  
Anderson ARA, 1997, FUND APPL NEMATOL, V20, P165
[10]  
Anderson ARA, 2007, SINGLE CELL BASED MO