Nanoionics: ion transport and electrochemical storage in confined systems

被引:1345
作者
Maier, J [1 ]
机构
[1] Max Planck Inst Festkorperforsch, D-70569 Stuttgart, Germany
关键词
D O I
10.1038/nmat1513
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically.
引用
收藏
页码:805 / 815
页数:11
相关论文
共 100 条
  • [1] INTERFACE EFFECT ON THE SILVER ION CONDUCTIVITY DURING THE CRYSTALLIZATION OF AGI-AG2O-V2O5 GLASSES
    ADAMS, S
    HARIHARAN, K
    MAIER, J
    [J]. SOLID STATE IONICS, 1995, 75 : 193 - 201
  • [2] Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries
    Aurbach, D
    [J]. JOURNAL OF POWER SOURCES, 2000, 89 (02) : 206 - 218
  • [3] Carbon metal fluoride nanocomposites - High-capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries
    Badway, F
    Cosandey, F
    Pereira, N
    Amatucci, GG
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (10) : A1318 - A1327
  • [4] Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity
    Balaya, P
    Li, H
    Kienle, L
    Maier, J
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) : 621 - 625
  • [5] BALAYA P, UNPUB APPL PHYS LETT
  • [6] Conduction model of metal oxide gas sensors
    Barsan, N
    Weimar, U
    [J]. JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) : 143 - 167
  • [7] Reaction of Li with grain-boundary atoms in nanostructured compounds
    Beaulieu, LY
    Larcher, D
    Dunlap, RA
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (09) : 3206 - 3212
  • [8] Beevers CA, 1937, Z KRISTALLOGR, V97, P59
  • [9] Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions
    Bhattacharyya, AJ
    Dollé, M
    Maier, J
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (11) : A432 - A434
  • [10] Second phase effects on the conductivity of non-aqueous salt solutions: "Soggy sand electrolytes"
    Bhattacharyya, AJ
    Maier, J
    [J]. ADVANCED MATERIALS, 2004, 16 (9-10) : 811 - +