Caffeic acid phenethyl ester decreases acute pneumonitis after irradiation in vitro and in vivo -: art. no. 158

被引:50
作者
Chen, MF
Keng, PC
Lin, PY
Yang, CT
Liao, SK
Chen, WC [1 ]
机构
[1] Chang Gung Mem Hosp, Dept Radiat Oncol, Chiayi, Taiwan
[2] Chang Gung Univ, Grad Inst Clin Med Sci, Toyuan, Taiwan
[3] Univ Rochester, Sch Med & Dent, Dept Radiat Oncol Biochem & Biophys, Rochester, NY USA
[4] Chang Gung Mem Hosp, Dept Pathol, Chiayi, Taiwan
[5] Chang Gung Mem Hosp, Dept Internal Med, Chiayi, Taiwan
关键词
D O I
10.1186/1471-2407-5-158
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Lung cancer is relatively resistant to radiation treatment and radiation pneumonitis is a major obstacle to increasing the radiation dose. We previously showed that Caffeic acid phenethyl ester ( CAPE) induces apoptosis and increases radiosensitivity in lung cancer. To determine whether CAPE, an antioxidant and an inhibitor of NF-kappa B, could be a useful adjuvant agent for lung cancer treatment, we examine the effects of CAPE on irradiated normal lung tissue in this study. Methods: We compared the effects of CAPE on cytotoxicity and intracellular oxidative stress in normal lung fibroblast and a lung cancer cell line. For in vivo analysis, whole thorax radiation ( single dose 10 Gy and 20 Gy) was delivered to BALB/c male mice with or without CAPE pretreatment. NF-kappaB activation and the expression levels of acute inflammatory cytokines were evaluated in mice after irradiation. Results: The in vitro studies showed that CAPE cause no significant cytotoxicity in normal lung as compared to lung cancer cells. This is probably due to the differential effect on the expression of NF-kappa B between normal and malignant lung cells. The results from in vivo study showed that CAPE treatment decreased the expression of inflammatory cytokines including IL-1 alpha and beta, IL-6, TNF-alpha and TGF-beta, after irradiation. Moreover, histological and immunochemical data revealed that CAPE decreased radiation-induced interstitial pneumonitis and TGF-beta expression. Conclusion: This study suggests that CAPE decreases the cascade of inflammatory responses induced by thoracic irradiation without causing toxicity in normal lung tissue. This provides a rationale for combining CAPE and thoracic radiotherapy for lung cancer treatment in further clinical studies.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 1991, RADIOPATHOLOGY ORGAN
[2]  
BHIMANI RS, 1993, CANCER RES, V53, P4528
[3]   Cell filling and radiosensitization by caffeic acid phenethyl ester (CAPE) in lung cancer cells [J].
Chen, MF ;
Wu, CT ;
Chen, YJ ;
Keng, PC ;
Chen, WC .
JOURNAL OF RADIATION RESEARCH, 2004, 45 (02) :253-260
[4]  
CHEN MF, IN PRESS INT J RAD O
[5]   The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells [J].
Chen, YJ ;
Shiao, MS ;
Wang, SY .
ANTI-CANCER DRUGS, 2001, 12 (02) :143-149
[6]  
CHIAO C, 1995, CANCER RES, V55, P3576
[7]   Tempol reduces the activation of nuclear factor-κB in acute inflammation [J].
Cuzzocrea, S ;
Pisano, B ;
Dugo, L ;
Ianaro, A ;
Patel, NSA ;
Caputi, AP ;
Thiemermann, C .
FREE RADICAL RESEARCH, 2004, 38 (08) :813-819
[8]   Lipid A radiosensitizes hypoxic EMT-6 tumor cells:: Role of the NF-κB signaling pathway [J].
De Ridder, M ;
Verovski, VN ;
Van den Berge, DL ;
Sermeus, ABL ;
Monsaert, C ;
Wauters, N ;
Storme, GA .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2003, 57 (03) :779-786
[9]  
Fitzpatrick LR, 2001, J PHARMACOL EXP THER, V299, P915
[10]   DEVELOPMENT OF FIBROSIS AFTER LUNG IRRADIATION IN RELATION TO INFLAMMATION AND LUNG-FUNCTION IN A MOUSE STRAIN PRONE TO FIBROSIS [J].
FRANKO, AJ ;
SHARPLIN, J .
RADIATION RESEARCH, 1994, 140 (03) :347-355