Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion

被引:301
作者
Feng, W
Brash, JL
Zhu, SP
机构
[1] McMaster Univ, Dept Chem Engn, Hamilton, ON L8S 4L7, Canada
[2] McMaster Univ, Dept Mat Sci & Engn, Hamilton, ON L8S 4L7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
surface modification; non-biofouling; protein adsorption; biomimetic polymer; atom transfer radical polymerization; grafting;
D O I
10.1016/j.biomaterials.2005.07.006
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biomimetic poly(2-methacryloyloxyethyl phosphorylcholine) (poly(MPC)) brushes with graft density 0.06-0.39 chains/nm(2) and chain length 5-200 monomer units were prepared from silicon wafer surfaces by combining self-assembly of initiator and surface-initiated atom transfer radical polymerization (ATRP). Water contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy were used to characterize the modified surfaces. These surfaces with well-controlled poly(MPC) brushes were tested for protein repelling performance. Fibrinogen adsorption from tris-buffered saline at pH 7.4 decreased significantly with increasing graft density and/or chain length of poly(MPC) and reached a level of < 10 ng/cm(2) at graft density >= 0.29 chains/nm(2) and chain length >= 100 units, compared to ca. 570 ng/cm(2) for the unmodified samples. While the fibrinogen adsorption was determined by both graft density and chain length, it showed a stronger dependence on graft density than on chain length. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:847 / 855
页数:9
相关论文
共 39 条
[1]   Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): effects of protein size and charge [J].
Archambault, JG ;
Brash, JL .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2004, 33 (02) :111-120
[2]   Exploiting the current paradigm of blood-material interactions for the rational design of blood-compatible materials [J].
Brash, JL .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2000, 11 (11) :1135-1146
[3]   Biomedical surface science: Foundations to frontiers [J].
Castner, DG ;
Ratner, BD .
SURFACE SCIENCE, 2002, 500 (1-3) :28-60
[4]   Surface polymerization of hydrophilic methacrylates from ultrafine silica sols in protic media at ambient temperature: A novel approach to surface functionalization using a polyelectrolytic macroinitiator [J].
Chen, XY ;
Armes, SP .
ADVANCED MATERIALS, 2003, 15 (18) :1558-+
[5]   Polymer brushes via surface-initiated polymerizations [J].
Edmondson, S ;
Osborne, VL ;
Huck, WTS .
CHEMICAL SOCIETY REVIEWS, 2004, 33 (01) :14-22
[6]   Controlled graft polymerization of methyl methacrylate on silicon substrate by the combined use of the Langmuir-Blodgett and atom transfer radical polymerization techniques [J].
Ejaz, M ;
Yamamoto, S ;
Ohno, K ;
Tsujii, Y ;
Fukuda, T .
MACROMOLECULES, 1998, 31 (17) :5934-5936
[7]   Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization [J].
Feng, W ;
Zhu, SP ;
Ishihara, K ;
Brash, JL .
LANGMUIR, 2005, 21 (13) :5980-5987
[8]   Atom-transfer radical grafting polymerization of 2-methacryloyloxyethyl phosphorylcholine from silicon wafer surfaces [J].
Feng, W ;
Brash, J ;
Zhu, SP .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (12) :2931-2942
[9]   Polymer brushes that resist adsorption of model proteins: Design parameters [J].
Halperin, A .
LANGMUIR, 1999, 15 (07) :2525-2533
[10]   Controlled synthesis of polymer brushes by "Living" free radical polymerization techniques [J].
Husseman, M ;
Malmström, EE ;
McNamara, M ;
Mate, M ;
Mecerreyes, D ;
Benoit, DG ;
Hedrick, JL ;
Mansky, P ;
Huang, E ;
Russell, TP ;
Hawker, CJ .
MACROMOLECULES, 1999, 32 (05) :1424-1431