De novo proteins as models of radical enzymes

被引:178
作者
Tommos, C [1 ]
Skalicky, JJ [1 ]
Pilloud, DL [1 ]
Wand, AJ [1 ]
Dutton, PL [1 ]
机构
[1] Univ Penn, Dept Biochem & Biophys, Johnson Res Fdn, Philadelphia, PA 19104 USA
关键词
D O I
10.1021/bi990609g
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Catalytically essential side-chain radicals have been recognized in a growing number of redox enzymes. Here we present a novel approach to study this class of redox cofactors. Our aim is to construct a de novo protein, a radical maquette, that will provide a protein framework in which to investigate how side-chain radicals are generated, controlled, and directed toward catalysis. A tryptophan and a tyrosine radical maquette, denoted alpha(3)W(1) and alpha(3)Y(1), respectively, have been synthesized, alpha(3)W(1) and alpha(3)Y(1) contain 65 residues each and have molecular masses of 7.4 kDa. The proteins differ only in residue 32, which is the position of their single aromatic side chain. Structural characterization reveals that the proteins fold in water solution into thermodynamically stable, alpha-helical conformations with well-defined tertiary structures. The proteins are resistant to pH changes and remain stable through the physiological pH range. The aromatic residues are shown to be located within the protein interior and shielded from the bulk phase, as designed. Differential pulse voltammetry was used to examine the reduction potentials of the aromatic side chains in alpha(3)W(1) and alpha(3)Y(1) and compare them to the potentials of tryptophan and tyrosine when dissolved in water. The tryptophan and tyrosine potentials were raised considerably when moved from a solution environment to a well-ordered protein milieu. We propose that the increase in reduction potential of the aromatic residues buried within the protein, relative to the solution potentials, is due to a lack of an effective protonic contact between the aromatic residues and the bulk solution.
引用
收藏
页码:9495 / 9507
页数:13
相关论文
共 123 条
[1]   THERMODYNAMIC ANALYSIS OF THE FOLDING OF THE STREPTOCOCCAL PROTEIN-G IGG-BINDING DOMAINS B1 AND B2 - WHY SMALL PROTEINS TEND TO HAVE HIGH DENATURATION TEMPERATURES [J].
ALEXANDER, P ;
FAHNESTOCK, S ;
LEE, T ;
ORBAN, J ;
BRYAN, P .
BIOCHEMISTRY, 1992, 31 (14) :3597-3603
[2]   Tyrosyl radicals in enzyme catalysis: Some properties and a focus on photosynthetic water oxidation [J].
Babcock, GT ;
Espe, M ;
Hoganson, C ;
LydakisSimantiris, N ;
McCracken, J ;
Shi, WJ ;
Styring, S ;
Tommos, C ;
Warncke, K .
ACTA CHEMICA SCANDINAVICA, 1997, 51 (05) :533-540
[3]   WATER OXIDATION IN PHOTOSYSTEM .2. FROM RADICAL CHEMISTRY TO MULTIELECTRON CHEMISTRY [J].
BABCOCK, GT ;
BARRY, BA ;
DEBUS, RJ ;
HOGANSON, CW ;
ATAMIAN, M ;
MCINTOSH, L ;
SITHOLE, I ;
YOCUM, CF .
BIOCHEMISTRY, 1989, 28 (25) :9557-9565
[4]   RESONANCE RAMAN-SPECTROSCOPY OF RIBONUCLEOTIDE REDUCTASE - EVIDENCE FOR A DEPROTONATED TYROSYL RADICAL AND PHOTOCHEMISTRY OF THE BINUCLEAR IRON CENTER [J].
BACKES, G ;
SAHLIN, M ;
SJOBERG, BM ;
LOEHR, TM ;
SANDERSLOEHR, J .
BIOCHEMISTRY, 1989, 28 (04) :1923-1929
[5]   PROTEIN STABILITY PARAMETERS MEASURED BY HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (01) :4-14
[6]   PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE [J].
BAI, YW ;
SOSNICK, TR ;
MAYNE, L ;
ENGLANDER, SW .
SCIENCE, 1995, 269 (5221) :192-197
[7]  
BALZER L, 1998, CURR OPIN STRUC BIOL, V8, P466
[8]   Protein design: The choice of de novo sequences [J].
Beasley, JR ;
Hecht, MH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (04) :2031-2034
[9]   EXCITED-STATE CHEMISTRY OF AROMATIC AMINO-ACIDS AND RELATED PEPTIDES .3. TRYPTOPHAN [J].
BENT, DV ;
HAYON, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (10) :2612-2619
[10]   Effect of 13C-, 18O- and 2H-labeling on the infrared modes of UV-induced phenoxyl radicals [J].
Berthomieu, C ;
Boullais, C ;
Neumann, JM ;
Boussac, A .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1365 (1-2) :112-116