A comparative study of stimulus-specific pupil responses in the domestic fowl (Gallus gallus domesticus) and the human

被引:31
作者
Barbur, JL
Prescott, NB
Douglas, RH
Jarvis, JR
Wathes, CM
机构
[1] City Univ London, Appl Vis Res Ctr, Dept Optometry & Vis Sci, London EC1V O11B, England
[2] Silsoe Res Inst, Bioengn Div, Silsoe MK45 4HS, Beds, England
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
10.1016/S0042-6989(01)00279-6
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Pupil responses triggered by specific stimulus attributes Such as spatial structure, colour and light flux changes were measured in eight domestic fowl. Comparative experiments were also carried out in human subjects. The results were unexpected in that large increments in light flux caused only small constrictions of the pupil. A red stimulus, on the other hand, caused a relatively large pupil response, but a green stimulus was less effective. This finding suggests that the size of the pupil, apart from being controlled by well-described pretectal pathways that mediate luminance responses, is also subject to other inputs. The pupil response in the domestic fowl may therefore make an effective quantitative indicator of things of significance to the animal. In some ways these observations are similar to other findings in primates in that the processing of stimulus attributes such as colour and Structure that are not normally associated with the light reflex pathway can cause a pupil response. The fowl pupil does however respond very fast when large light flux changes or red stimuli are involved. Results obtained with sinusoidally modulated light flux changes reveal a short response latency of 105 ms (SD = 8.3). In contrast, human responses measured for similar stimulus conditions reveal a latency of 434 ms (SID = 36). The speed of pupil response in the fowl is significantly higher than in humans, but the response amplitude is usually small. Another interesting observation is the lack of sustained response to changes in ambient illumination. These findings suggest that the input to the pupilloconstrictor neurones in the fowl consists largely of transient neurones with little sustained component. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 33 条
[1]  
Alexandridis E., 1992, J PSYCHOPHYSIOL, V5, P223
[2]   PUPILLARY RESPONSES TO STIMULUS STRUCTURE, COLOR AND MOVEMENT [J].
BARBUR, JL ;
HARLOW, AJ ;
SAHRAIE, A .
OPHTHALMIC AND PHYSIOLOGICAL OPTICS, 1992, 12 (02) :137-141
[3]  
BARBUR JL, 1986, CLIN VISION SCI, V1, P107
[4]   The unseen color aftereffect of an unseen stimulus: Insight from blindsight into mechanisms of color afterimages [J].
Barbur, JL ;
Weiskrantz, L ;
Harlow, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11637-11641
[5]  
BARBUR JL, 1987, CLIN VISION SCI, V2, P131
[6]   INSIGHTS INTO THE DIFFERENT EXPLOITS OF COLOR IN THE VISUAL-CORTEX [J].
BARBUR, JL ;
HARLOW, AJ ;
PLANT, GT .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1994, 258 (1353) :327-334
[7]  
BARBUR JL, 1994, TECHNICAL DIGEST SER, P312
[8]  
BARBUR JL, 1996, COLOUR VISION DEFICI, V11, P417
[9]   Immunocytochemical study on the triple origin of the sphincter iris in the chick embryo [J].
Barrio-Asensio, C ;
Murillo-González, J ;
Peña-Melián, A ;
Puerta-Fonollá, J .
DEVELOPMENT GENES AND EVOLUTION, 1999, 209 (10) :620-624
[10]   PUPILLARY RESPONSE OF SCREECH OWL OTUS ASIO [J].
BISHOP, LG ;
STARK, L .
SCIENCE, 1965, 148 (3678) :1750-&