Motion of a two-dimensional monopolar vortex in a bounded rectangular domain

被引:11
作者
vanGeffen, JHGM
Meleshko, VV
vanHeijst, GJF
机构
[1] EINDHOVEN UNIV TECHNOL,DEPT APPL PHYS,FLUID DYNAM LAB,NL-5600 MB EINDHOVEN,NETHERLANDS
[2] NATL ACAD SCI,INST HYDROMECH,KIEV 252057,UKRAINE
关键词
D O I
10.1063/1.869024
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we describe results of a study of the two-dimensional motion of a distributed monopolar vortex in a viscous incompressible fluid in a bounded rectangular domain with free-slip and no-slip boundary conditions. In the case of free-slip walls the motion of the vortex center can be satisfactorily modelled by a single point vortex in an inviscid fluid. Comparison of the results of both models reveals a good quantitative agreement for the trajectories of the vortex centers and of the period of one revolution around the center of the domain, for moderate viscous effects (Re = 1000 and more). In a domain with no-slip walls the distributed monopolar vortex moves to the center of the domain along a curved but not smooth trajectory due to the interaction of the monopole and the wall-induced vorticity. (C) 1996 American Institute of Physics.
引用
收藏
页码:2393 / 2399
页数:7
相关论文
共 11 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
[2]  
CLERCX HJH, UNPUB J COMPUT PHYS
[3]  
Müller W, 1930, Z ANGEW MATH MECH, V10, P227
[4]  
NEKRASSOW AI, 1931, T CENTRAL AERO HYDRO, V84, P1
[5]   VORTEX DIPOLE REBOUND FROM A WALL [J].
ORLANDI, P .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (08) :1429-1436
[6]  
Saffman P.G., 1992, VORTEX DYNAMICS
[7]   VORTEX INTERACTIONS [J].
SAFFMAN, PG ;
BAKER, GR .
ANNUAL REVIEW OF FLUID MECHANICS, 1979, 11 :95-122
[8]  
TERRAZAWA K, 1922, DECAY VORTICAL MOTIO, V1, pN4
[9]  
VANDEKONIJNENBE.JA, 1995, THESIS EINDHOVEN U T
[10]   NUMERICAL AND EXPERIMENTAL-STUDY OF THE INTERACTION BETWEEN A VORTEX DIPOLE AND A CIRCULAR-CYLINDER [J].
VERZICCO, R ;
FLOR, JB ;
VANHEIJST, GJF ;
ORLANDI, P .
EXPERIMENTS IN FLUIDS, 1995, 18 (03) :153-163