Lossless integer wavelet transform

被引:44
作者
Dewitte, S [1 ]
Cornelis, J [1 ]
机构
[1] FREE UNIV BRUSSELS,DEPT ELEC,B-1050 BRUSSELS,BELGIUM
关键词
D O I
10.1109/97.586035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Signal compression can be obtained by wavelet transformation of integer input data followed by quantification and coding, As the quantification is usually lossy, the whole compression/decompression scheme is lossy too. We define a critical wavelet coefficient quantification, i,e., the coarsest quantification that allows perfect reconstruction, This is demonstrated for the Haar transform and for arbitrarily smooth wavelet transforms derived from it. The new integer wavelet transform allows implementation of multiresolution subband compression schemes, in which the decompressed data are gradually refined, retaining the option of perfect reconstruction.
引用
收藏
页码:158 / 160
页数:3
相关论文
共 6 条
[1]   Image coding using wavelet transform [J].
Antonini, Marc ;
Barlaud, Michel ;
Mathieu, Pierre ;
Daubechies, Ingrid .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1992, 1 (02) :205-220
[2]  
EGGER O, P IEEE ICIP 95, V3, P616
[3]  
KOMATSU K, P SPIE VCIP 96, V2727, P1094
[4]   A THEORY FOR MULTIRESOLUTION SIGNAL DECOMPOSITION - THE WAVELET REPRESENTATION [J].
MALLAT, SG .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (07) :674-693
[5]   EMBEDDED IMAGE-CODING USING ZEROTREES OF WAVELET COEFFICIENTS [J].
SHAPIRO, JM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (12) :3445-3462
[6]  
SWELDENS W, 1994, IND MATH INITIATIVE, P7