Analysis of newly identified low copy AluYj subfamily

被引:8
作者
Park, ES
Huh, JW
Kim, TH
Kwak, KD
Kim, W
Kim, HS [1 ]
机构
[1] Pusan Natl Univ, Coll Nat Sci, Div Biol Sci, Pusan 609735, South Korea
[2] Dankook Univ, Dept Biol Sci, Cheonan 330714, South Korea
关键词
AluYj subfamily; CpG mutation; diagnostic mutation; evolution;
D O I
10.1266/ggs.80.415
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human specific AluY elements were investigated by comparative analysis between human chromosome 21 and chimpanzee chromosome 22. Human specific AluY element was identified on human chromosome 21q22 (accession no. AL163282), and then that was a new member of AluYj subfamily. From the bio-informatic analysis, AluYj subfamily was investigated in human whole genome using AluYj4 consensus sequence (accession no. AL163282). Thirteen members of the AluYj4 elements (4 diagnostic mutations) and eight members of the AluYj3 elements (3 diagnostic mutations) were identified with distinct diagnostic mutation from AluY consensus sequence. The results of the molecular clock calculation of non-CpG region substitution indicated that, AluYj4 elements (2.1 million years old) may be proliferated more recent time than AluYj3 elements (14.1 million years old). For the verification of recent insertion time, four of AluYj4 elements (ch2-AC017101, ch10-AC044786, chl2-AC007656 and ch21-AL163282) from human chromosomes 2, 10, 12, 21 were analyzed by PCR amplification using various human and primate DNA samples. Though, no polymorphism was detected in human population, we identified the new AluYj4 subfamily as the human specific elements.
引用
收藏
页码:415 / 422
页数:8
相关论文
共 37 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Alu repeats and human genomic diversity [J].
Batzer, MA ;
Deininger, PL .
NATURE REVIEWS GENETICS, 2002, 3 (05) :370-379
[3]   STRUCTURE AND VARIABILITY OF RECENTLY INSERTED ALU FAMILY MEMBERS [J].
BATZER, MA ;
KILROY, GE ;
RICHARD, PE ;
SHAIKH, TH ;
DESSELLE, TD ;
HOPPENS, CL ;
DEININGER, PL .
NUCLEIC ACIDS RESEARCH, 1990, 18 (23) :6793-6798
[4]   Standardized nomenclature for Alu repeats [J].
Batzer, MA ;
Deininger, PL ;
HellmannBlumberg, U ;
Jurka, J ;
Labuda, D ;
Rubin, CM ;
Schmid, CW ;
Zietkiewicz, E ;
Zuckerkandl, E .
JOURNAL OF MOLECULAR EVOLUTION, 1996, 42 (01) :3-6
[5]   EVIDENCE THAT MOST HUMAN ALU SEQUENCES WERE INSERTED IN A PROCESS THAT CEASED ABOUT 30 MILLION YEARS AGO [J].
BRITTEN, RJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (13) :6148-6150
[6]   MULTIPLE SEQUENCE ALIGNMENT WITH HIERARCHICAL-CLUSTERING [J].
CORPET, F .
NUCLEIC ACIDS RESEARCH, 1988, 16 (22) :10881-10890
[7]   AluGene:: a database of Alu elements incorporated within protein-coding genes [J].
Dagan, T ;
Sorek, R ;
Sharon, E ;
Ast, G ;
Graur, D .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D489-D492
[8]  
DEININGER PL, 1992, TRENDS GENET, V8, P307, DOI 10.1016/0168-9525(92)90262-3
[9]   Alu repeats and human disease [J].
Deininger, PL ;
Batzer, MA .
MOLECULAR GENETICS AND METABOLISM, 1999, 67 (03) :183-193
[10]   Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition [J].
Feng, QH ;
Moran, JV ;
Kazazian, HH ;
Boeke, JD .
CELL, 1996, 87 (05) :905-916