On the time to ruin for Erlang(2) risk processes

被引:249
作者
Dickson, DCM [1 ]
Hipp, C
机构
[1] Univ Melbourne, Dept Econ, Ctr Actuarial Studies, Melbourne, Vic 3010, Australia
[2] Univ Karlsruhe, Lehrstuhl Versicherungswissensch, D-76133 Karlsruhe, Germany
关键词
Sparre Andersen risk processes; Erlang(2); time to ruin;
D O I
10.1016/S0167-6687(01)00091-9
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, we consider a Sparre Andersen risk process for which the claim inter-arrival distribution is Erlang(2). Our purpose is to find expressions for moments of the time to ruin, given that ruin occurs. To do this, we define an auxiliary function phi along the lines of Gerber and Shiu [N. Am. Actu. J. 2 (1998) 48] and Gerber and Landry [Ins.: Math. Econ. 22 (1998) 263]. Our method of solution differs from that of Willmot and Lin [Ins.: Math. Econ. 25 (1999) 570; Ins.: Math. Econ. 27 (2000) 19] who consider this problem for the classical risk model, in that we first solve for the auxiliary function phi. (C) 2001 Elsevier Science BN. All rights reserved.
引用
收藏
页码:333 / 344
页数:12
相关论文
共 8 条
[1]  
Dickson D. C., 1984, SCANDINAVIAN ACTUARI, V1984
[2]   Ruin probabilities for Erlang(2) risk processes [J].
Dickson, DCM ;
Hipp, C .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 22 (03) :251-262
[3]  
DICKSON DCM, 2000, SCANDINAVIAN ACTUARI, P147
[4]  
Gerber H. U., 1998, N AM ACTUARIAL J, V2, P48, DOI [DOI 10.1080/10920277.1998.10595671, 10.1080/10920277.1998.10595671]
[5]   On the discounted penalty at ruin in a jump-diffusion and the perpetual put option [J].
Gerber, HU ;
Landry, B .
INSURANCE MATHEMATICS & ECONOMICS, 1998, 22 (03) :263-276
[6]   The moments of the time of ruin, the surplus before ruin, and the deficit at ruin [J].
Lin, XS ;
Willmot, GE .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 27 (01) :19-44
[7]   Analysis of a defective renewal equation arising in ruin theory [J].
Lin, XS ;
Willmot, GE .
INSURANCE MATHEMATICS & ECONOMICS, 1999, 25 (01) :63-84
[8]   A Laplace transform representation in a class of renewal queueing and risk processes [J].
Willmot, GE .
JOURNAL OF APPLIED PROBABILITY, 1999, 36 (02) :570-584