Roles of ERBB family receptor tyrosine kinases, and downstream signaling pathways, in the control of cell growth and survival

被引:181
作者
Grant, S
Qiao, L
Dent, P [1 ]
机构
[1] Virginia Commonwealth Univ, Med Coll Virginia, Dept Radiat Oncol, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Med Coll Virginia, Dept Hematol Oncol, Richmond, VA 23298 USA
[3] Virginia Commonwealth Univ, Med Coll Virginia, Dept Pharmacol & Toxicol, Richmond, VA 23298 USA
来源
FRONTIERS IN BIOSCIENCE-LANDMARK | 2002年 / 7卷
关键词
signal transduction; cell cycle; ErbB1; EGF receptor; ErbB2; tyrphostin; mitogen activated protein kinase (MAPK); c-jun NH2-terminal kinase (JNK); phosphatidyl inositol 3-kinase (PI3K); cyclin kinase inhibitor protein (CKI); p21(Cip-1/WAF1/mda6); apoptosis; caspase; mitochondria; review;
D O I
10.2741/grant
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Within the last 20 years, multiple novel intracellular signal transduction pathways, downstream of plasma membrane receptors, have been discovered. These pathways have been linked to the regulation of diverse cellular events such as proliferation, senescence, differentiation and apoptosis. This review will focus upon the roles of signaling by the ErbB receptor tyrosine kinase family (ErbB1-4) in the survival of cells in response to cytotoxic stresses. In addition, plasma membrane-to-nucleus signaling pathways downstream of these receptors, such as mitogen activated protein kinase (MAPK) and phosphatidyl inositol 3-kinase (PI3K), in the control of cell survival will be discussed. Recent evidence suggests that signaling by the MAPK and PI3K pathways can both enhance proliferation as well as protect cells from apoptosis. We describe potential mechanisms by which modulation of pathway activities following inhibition of ErbB receptor function may alter the sensitivity of cells to toxic insults, leading to increased apoptosis and loss of clonogenic survival.
引用
收藏
页码:D376 / D389
页数:14
相关论文
共 166 条
[1]   Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation [J].
Abbott, DW ;
Holt, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (05) :2732-2742
[2]  
Albanell J, 2001, CANCER RES, V61, P6500
[3]   Molecular basis for the substrate specificity of protein kinase B; Comparison with MAPKAP kinase-1 and p70 S6 kinase [J].
Alessi, DR ;
Caudwell, FB ;
Andjelkovic, M ;
Hemmings, BA ;
Cohen, P .
FEBS LETTERS, 1996, 399 (03) :333-338
[4]  
Andjelkovic M, 1999, MOL CELL BIOL, V19, P5061
[5]   Matrix attachment regulates Fas-induced apoptosis in endothelial cells: A role for c-Flip and implications for anoikis [J].
Aoudjit, F ;
Vuori, K .
JOURNAL OF CELL BIOLOGY, 2001, 152 (03) :633-643
[6]   Expression of herstatin, an autoinhibitor of HER-2/neu, inhibits transactivation of HER-3 by HER-2 and blocks EGF activation of the EGF receptor [J].
Azios, NG ;
Romero, FJ ;
Denton, MC ;
Doherty, JK ;
Clinton, GM .
ONCOGENE, 2001, 20 (37) :5199-5209
[7]   Further evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) is required for the stability and phosphorylation of protein kinase C (PKC) isoforms [J].
Balendran, A ;
Hare, GR ;
Kieloch, A ;
Williams, MR ;
Alessi, DR .
FEBS LETTERS, 2000, 484 (03) :217-223
[8]   Studies leading to the identification of ZD1839 (Iressa™):: An orally active, selective epidermal growth factor receptor tyrosine kinase inhibitor targeted to the treatment of cancer [J].
Barker, AJ ;
Gibson, KH ;
Grundy, W ;
Godfrey, AA ;
Barlow, JJ ;
Healy, MP ;
Woodburn, JR ;
Ashton, SE ;
Curry, BJ ;
Scarlett, L ;
Henthorn, L ;
Richards, L .
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2001, 11 (14) :1911-1914
[9]   Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin [J].
Baselga, J ;
Pfister, D ;
Cooper, MR ;
Cohen, R ;
Burtness, B ;
Bos, M ;
D'Andrea, G ;
Seidman, A ;
Norton, L ;
Gunnett, K ;
Falcey, J ;
Anderson, V ;
Waksal, H ;
Mendelsohn, J .
JOURNAL OF CLINICAL ONCOLOGY, 2000, 18 (04) :904-914
[10]   Mechanism of action of anti-HER2 monoclonal antibodies [J].
Baselga, J ;
Albanell, J .
ANNALS OF ONCOLOGY, 2001, 12 :35-41