Moving contact lines in the Cahn-Hilliard theory

被引:275
作者
Seppecher, P
机构
[1] Lab. d'Anal. Non Lineaire Appl., Univ. de Toulon et du Var, 83957 La Garde
关键词
SECOND GRADIENT; SOLID-SURFACES; FLUID; CAPILLARITY; DYNAMICS; MOTION; FLOW;
D O I
10.1016/0020-7225(95)00141-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We establish the equations of motion of an isothermal viscous Cahn-Hilliard fluid and we investigate the dynamics of fluids having moving contact lines under this theory. The force singularity arising in the classical model of capillarity is no longer present. This removal is due to a mass transfer across the interface combined with a finite thickness of the interface. A numerical simulation of the flow in the immediate vicinity of the contact line shows the connection between the static contact angle. the dynamic angle and points out the influence of the velocity. Copyright (C) 1996 Elsevier Science Ltd
引用
收藏
页码:977 / 992
页数:16
相关论文
共 27 条
[1]  
ALBERTI G, UNPUB ARCH RATIONAL
[2]  
[Anonymous], J FLUID MECH
[3]  
BOUCHITTE G, 1992, MOTION MEAN CURVATUR, P23
[4]   CRITICAL-POINT WETTING [J].
CAHN, JW .
JOURNAL OF CHEMICAL PHYSICS, 1977, 66 (08) :3667-3672
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .3. NUCLEATION IN A 2-COMPONENT INCOMPRESSIBLE FLUID [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (03) :688-699
[6]  
CASAL P, 1972, CR ACAD SCI A MATH, V274, P1571
[7]  
CASAL P, 1985, CR ACAD SCI II, V300, P231
[8]   WETTING - STATICS AND DYNAMICS [J].
DEGENNES, PG .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :827-863
[9]  
DELLISOLA F, IN PRESS MECANICA
[10]  
DUNN JE, 1985, ARCH RATION MECH AN, V88, P95