Li2S-reduced graphene oxide nanocomposites as cathode material for lithium sulfur batteries

被引:95
作者
Han, Kai [1 ,2 ]
Shen, Jingmei [2 ]
Hayner, Cary M. [2 ]
Ye, Hongqi [1 ]
Kung, Mayfair C. [2 ]
Kung, Harold H. [2 ]
机构
[1] Cent S Univ, Coll Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
基金
中国国家自然科学基金;
关键词
Lithium; Sulfide; Battery; Polysulfide; Cathode; HIGH-CAPACITY; IRREVERSIBLE OXIDATION; CARBON; PERFORMANCE; ELECTRODE; PARTICLES; COMPOSITES; SHUTTLE; CELL;
D O I
10.1016/j.jpowsour.2013.11.062
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A lithium sulfide-reduced graphene oxide nanocomposite (Li2S-rGO) was synthesized and evaluated as the cathode material and Li source for the assembly of Li-S batteries. The composite, with a unique 3-D pocket structure, was synthesized by a combination of facile solution chemistry and thermal treatment. The as-prepared Li2S-rGO nanocomposites were characterized by X-ray photoelectron spectroscopy, Xray diffraction and scanning electron microscopy, which showed 20-40 nm Li2S particles homogeneously dispersed between reduced graphene oxide sheets. Li2S contents as high as similar to 66% could be obtained. When used with an electrolyte containing LiNO3 and polysulfide, the Li2S-rGO nanocomposites exhibited a high initial capacity of 982 mAh g(-1) Li2S. However, there was noticeable capacity fade in subsequent cycles, probably due to polysulfide dissolution and the shuttle mechanism, but a capacity of 315 mAh g(-1) could still be obtained after 100 cycles, with 90-95% coulomb efficiency. The effect of polysulfide additive in the electrolyte on the activation of Li2S in the first delithiation step was discussed. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 44 条
[1]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[2]   Nanostructured Li2S-C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries [J].
Cai, Kunpeng ;
Song, Min-Kyu ;
Cairns, Elton J. ;
Zhang, Yuegang .
NANO LETTERS, 2012, 12 (12) :6474-6479
[3]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[4]   Shuttle phenomenon - The irreversible oxidation mechanism of sulfur active material in Li-S battery [J].
Diao, Yan ;
Xie, Kai ;
Xiong, Shizhao ;
Hong, Xiaobin .
JOURNAL OF POWER SOURCES, 2013, 235 :181-186
[5]   Insights into Li-S Battery Cathode Capacity Fading Mechanisms: Irreversible Oxidation of Active Mass during Cycling [J].
Diao, Yan ;
Xie, Kai ;
Xiong, Shizhao ;
Hong, Xiaobin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (11) :A1816-A1821
[6]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[7]   Li2S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries [J].
Fu, Yongzhu ;
Su, Yu-Sheng ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2014, 4 (01)
[8]   Orthorhombic Bipyramidal Sulfur Coated with Polypyrrole Nanolayers As a Cathode Material for Lithium-Sulfur Batteries [J].
Fu, Yongzhu ;
Manthiram, Arumugam .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8910-8915
[9]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603
[10]   Lithium-Sulfur Battery Cathode Enabled by Lithium-Nitrile Interaction [J].
Guo, Juchen ;
Yang, Zichao ;
Yu, Yingchao ;
Abruna, Hector D. ;
Archer, Lynden A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (02) :763-767