Combining classification techniques with Kalman filters for aircraft engine diagnostics

被引:32
作者
Dewallef, P
Romessis, C
Léonard, O
Mathioudakis, K
机构
[1] Univ Liege, ASMA Dept, B-4000 Liege, Belgium
[2] Natl Tech Univ Athens, Lab Thermal Turbomachines, Athens 15710, Greece
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2006年 / 128卷 / 02期
关键词
D O I
10.1115/1.2056507
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A diagnostic method consisting of a combination of Kalman filters and Bayesian Belief Network (BBN) is presented. A soft-constrained Kalman filter uses a priori information derived by a BBN at each time step, to derive estimations of the unknown health parameters. The resulting algorithm hers improved identification capability in comparison to the stand-alone Kalman filter. The paper focuses on a way of combining the information produced by the BBN with the Kalman filter. An extensive set of fault cases is used to test the method on a typical civil turbofan layout. The effectiveness of the method is thus demonstrated, and its advantages over individual constituent methods are presented.
引用
收藏
页码:281 / 287
页数:7
相关论文
共 15 条
[1]  
[Anonymous], ADV NEURAL INFORM PR
[2]  
Aretakis N., 2002, ASME TURBO EXPO 2002, V2, DOI [10.1115/GT2002-30031, DOI 10.1115/GT2002-30031]
[3]  
Bishop C. M., 1996, Neural networks for pattern recognition
[4]  
BROTHERTON T, 2003, 2003 IEEE AER C
[5]  
CURNOCK B, 2000, DNS62433
[6]  
DEWALLEF P, GT200453539 ASME
[7]  
GRODENT M, 2001, 37 AIAA ASME SAE ASE
[8]  
KOBAYASHI T, 2003, GT200338550 ASME
[9]  
Mackay D.J.C., 1995, Bayesian Methods for Neural Networks
[10]  
MATHIOUDAKIS K, 2003, VONKARMAN I LECT SER