Zonal and streamer structures in magnetic-curvature-driven Rayleigh-Taylor instability

被引:33
作者
Das, A [1 ]
Sen, A [1 ]
Mahajan, S [1 ]
Kaw, P [1 ]
机构
[1] Inst Plasma Res, Bhat 382428, Gandhinagar, India
关键词
D O I
10.1063/1.1416483
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A detailed numerical investigation of the nonlinear evolution of the magnetic curvature-driven Rayleigh-Taylor instability is carried out. The evolution is found to follow one of two distinct paths-that leading to a saturated zonal flow pattern or growing streamer structures. For a fixed value of the density gradient and the magnetic field gradient, the parametric regimes for the occurrence of these two states is delineated in the form of a phase diagram in the D-mu space, where D is the diffusion coefficient and mu is the viscosity parameter. The bifurcation behavior is explained on the basis of a reduced quasilinear model and the final saturated state of zonal flows is understood from a phenomenological zero-dimensional model. (C) 2001 American Institute of Physics.
引用
收藏
页码:5104 / 5112
页数:9
相关论文
共 27 条
[1]   Plasma potential well and velocity shear layer at the edge of reversed field pinch plasmas [J].
Antoni, V ;
Desideri, D ;
Martines, E ;
Serianni, G ;
Tramontin, L .
PHYSICAL REVIEW LETTERS, 1997, 79 (24) :4814-4817
[2]   Nondiffusive transport in tokamaks: Three-dimensional structure of bursts and the role of zonal flows [J].
Beyer, P ;
Benkadda, S ;
Garbet, X ;
Diamond, PH .
PHYSICAL REVIEW LETTERS, 2000, 85 (23) :4892-4895
[3]   Convection driven zonal flows and vortices in the major planets [J].
Busse, F. H. .
CHAOS, 1994, 4 (02) :123-134
[4]   Streamer and zonal flow generation from envelope modulations in drift wave turbulence [J].
Champeaux, S ;
Diamond, PH .
PHYSICS LETTERS A, 2001, 288 (3-4) :214-219
[5]   Excitation of zonal flow by drift waves in toroidal plasmas [J].
Chen, L ;
Lin, ZH ;
White, R .
PHYSICS OF PLASMAS, 2000, 7 (08) :3129-3132
[6]   Nonlinear saturation of the Rayleigh-Taylor instability [J].
Das, A ;
Mahajan, S ;
Kaw, P ;
Sen, A ;
Benkadda, S ;
Verga, A .
PHYSICS OF PLASMAS, 1997, 4 (04) :1018-1027
[7]   Theory of two-dimensional mean field electron magnetohydrodynamics [J].
Das, A ;
Diamond, PH .
PHYSICS OF PLASMAS, 2000, 7 (01) :170-177
[8]   In search of the elusive zonal flow using cross-bicoherence analysis [J].
Diamond, PH ;
Rosenbluth, MN ;
Sanchez, E ;
Hidalgo, C ;
Van Milligen, B ;
Estrada, T ;
Brañas, B ;
Hirsch, M ;
Hartfuss, HJ ;
Carreras, BA .
PHYSICAL REVIEW LETTERS, 2000, 84 (21) :4842-4845
[9]   Secondary instability in drift wave turbulence as a mechanism for zonal flow and avalanche formation [J].
Diamond, PH ;
Champeaux, S ;
Malkov, M ;
Das, A ;
Gruzinov, I ;
Rosenbluth, MN ;
Holland, C ;
Wecht, B ;
Smolyakov, AI ;
Hinton, FL ;
Lin, Z ;
Hahm, TS .
NUCLEAR FUSION, 2001, 41 (08) :1067-1080
[10]  
DIAMOND PH, 1998, PLASMA PHYSICS CONTR