Almost Hermitian random matrices: Crossover from Wigner-Dyson to Ginibre eigenvalue statistics

被引:144
作者
Fyodorov, YV [1 ]
Khoruzhenko, BA [1 ]
Sommers, HJ [1 ]
机构
[1] UNIV LONDON QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
关键词
D O I
10.1103/PhysRevLett.79.557
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the method of orthogonal polynomials, we analyze the statistical properties of complex eigenvalues of random matrices describing a crossover from Hermitian matrices characterized by the Wigner-Dyson statistics of real eigenvalues to strongly non-Hermitian ones whose complex eigenvalues were studied by Ginibre. Two-point statistical measures [as, e.g., spectral form factor, number variance, and small distance behavior of the nearest neighbor distance distribution p(s)] are studied in more detail. In particular, we found that the latter function may exhibit unusual behavior p(s) proportional to s(5/2) for some parameter values.
引用
收藏
页码:557 / 560
页数:4
相关论文
共 37 条
[1]  
[Anonymous], CHAOS QUANTUM PHYS
[2]   LAUGHLIN WAVE-FUNCTIONS, COULOMB GASES AND EXPANSIONS OF THE DISCRIMINANT [J].
DIFRANCESCO, P ;
GAUDIN, M ;
ITZYKSON, C ;
LESAGE, F .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (24) :4257-4351
[3]   CONTROL OF THE TRANSITION TO CHAOS IN NEURAL NETWORKS WITH RANDOM CONNECTIVITY [J].
Doyon, B. ;
Cessac, B. ;
Quoy, M. ;
Samuelides, M. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02) :279-291
[5]   SUPERSYMMETRY AND THEORY OF DISORDERED METALS [J].
EFETOV, KB .
ADVANCES IN PHYSICS, 1983, 32 (01) :53-127
[6]  
EFETOV KB, CONDMAT9702091
[7]  
FEINBERG J, HEPTH9703087
[8]   LOG-GASES, RANDOM MATRICES AND THE FISHER-HARTWIG CONJECTURE [J].
FORRESTER, PJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05) :1179-1191
[9]   SOME STATISTICAL PROPERTIES OF THE EIGENVALUES OF COMPLEX RANDOM MATRICES [J].
FORRESTER, PJ .
PHYSICS LETTERS A, 1992, 169 (1-2) :21-24
[10]  
FORRESTER PJ, 1997, INT J MOD PHYS A, V11, P941