In order to assess the success of in situ remediation of coniferous forest soil polluted by a Cu-Ni smelter, the total Cu concentration in soil percolation water, the fluxes of Cu down through the soil profile, and the toxicity of soil percolation water to soil bacteria were studied. Total Cu in percolation water was also fractionated into free ionic and complexed forms. The toxicity of the percolation water was measured by the [H-3]-thymidine incorporation method, which measures bacterial growth rates. Soil percolation water was collected during one growing season by zero tension lysimeters inserted at depths of 0.2 and 0.4 m in the soil. The treatments consisted of a control, mulch application to the forest floor (M) and mulch application after removing the polluted organic soil layer (MR). The mulch consisted of a mixture of compost and woodchips (1/1; vol/vol). Analysis of Cu species and dissolved organic carbon (DOC) indicated that DOC leached from the mulch and complexed Cu into forms that were less toxic to soil bacteria. At 0.2 m depth percolation water toxicity was 19% lower in the M and 42% lower in the MR treatment than in the control. Toxicity correlated with the Cu2+ concentration, which was 61 and 8410 lower in the M and MR treatments, respectively, compared to the control. However, there were signs that total Cu had leached down through the soil profile, the leaching being more pronounced in the MR treatment.