Testing homogeneity in a mixture distribution via the L2 distance between competing models

被引:37
作者
Charnigo, R [1 ]
Sun, JY
机构
[1] Univ Kentucky, Dept Stat, Lexington, KY 40506 USA
[2] Univ Kentucky, Div Biostat, Lexington, KY 40506 USA
[3] Case Western Reserve Univ, Dept Stat, Cleveland, OH 44106 USA
关键词
D test; mixtures; modified likelihood ratio test; weighted L-2 measure;
D O I
10.1198/016214504000000494
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ascertaining the number of components in a mixture distribution is an interesting and challenging problem for statisticians. Chen, Chen. and Kalbfleisch recently proposed a modified likelihood ratio test (MLRT), which is distribution-free and locally most powerful, asymptotically. In this article we present a new method for testing whether a finite mixture distribution is homogeneous. Our method, the D test, is based on the L-2 distance between a fitted homogeneous model and a fitted heterogeneous model. For mixture components from standard parametric families, the D-test statistic has a closed-form expression in terms of parameter estimators, whereas likelihood ratio-type test statistics do not; the latter test statistics are nontrivial functions of both the parameter estimators and the full dataset. The convergence rates of the D-test statistic under a null hypothesis of homogeneity and an alternative hypothesis of heterogeneity are established. The D test is shown to be competitive with the MLRT when the Mixture components come from a normal location family. However, in the exponential scale and normal location/scale cases, the relative performances of the D test and the MLRT are mixed. In cases such as these two, we propose to use a weighted D test, in which the measure underlying the L-2 distance is changed to accentuate the disparities between the homogeneous and heterogeneous models. Changing the measure is equivalent to computing the D-test statistic using a weighting function or to transforming the data before conducting the D test. Appropriately weighted D tests are competitive in both the exponential scale and normal location/scale cases. After applying the D test to a dataset in which the observations are measurements of firms' financial performances, we conclude with discussion and remarks.
引用
收藏
页码:488 / 498
页数:11
相关论文
共 30 条
[1]  
Bickel P.J., 1993, STAT PROBABILITY RAG, P83
[2]  
Brown L. D., 1986, FUNDAMENTALS STAT EX, DOI DOI 10.1214/LNMS/1215466757
[3]   A modified likelihood ratio test for homogeneity in finite mixture models [J].
Chen, HF ;
Chen, JH ;
Kalbfleisch, JD .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :19-29
[4]   Relationships among solvent softness scales [J].
Chen, T ;
Hefter, G ;
Marcus, Y .
JOURNAL OF SOLUTION CHEMISTRY, 2000, 29 (03) :201-216
[5]   ASYMPTOTIC-DISTRIBUTION OF THE LIKELIHOOD RATIO TEST THAT A MIXTURE OF 2 BINOMIALS IS A SINGLE BINOMIAL [J].
CHERNOFF, H ;
LANDER, E .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 43 (1-2) :19-40
[6]   HYPOTHESIS-TESTING WHEN A NUISANCE PARAMETER IS PRESENT ONLY UNDER THE ALTERNATIVE [J].
DAVIES, RB .
BIOMETRIKA, 1987, 74 (01) :33-43
[7]  
Everitt B. S., 1981, FINITE MIXTURE DISTR
[8]   Likelihood ratio test for univariate Gaussian mixture [J].
Garel, B .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2001, 96 (02) :325-350
[9]  
GHOSH JK, 1985, P BERKELEY C HONOR J, V2, P789
[10]  
HARTIGAN JA, 1985, P BERK C HON J NEYM, P807