Helical shell models for three-dimensional turbulence

被引:59
作者
Benzi, R
Biferale, L
Kerr, RM
Trovatore, E
机构
[1] NATL CTR ATMOSPHER RES,GEOPHYS TURBULENCE PROGRAM,BOULDER,CO 80307
[2] UNIV CAGLIARI,DIPARTIMENTO FIS,INFM,I-09124 CAGLIARI,ITALY
来源
PHYSICAL REVIEW E | 1996年 / 53卷 / 04期
关键词
D O I
10.1103/PhysRevE.53.3541
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper a class of shell models is studied, defined in terms of the interactions of two complex dynamical variables per shell, transporting positive and negative helicity, respectively. Following a decomposition into helical modes of the velocity Fourier components of Navier-Stokes equations [F. Waleffe, Phys. Fluids A 4, 350 (1992)], classification of the helical interactions of the three modes in each triad leads to four different types of shell models. Free parameters are fixed by imposing the conservation of energy and of a ''generalized helicity'' H-alpha in the inviscid and unforced limit. For alpha=1 this nonpositive invariant looks exactly like helicity in the Fourier-helical decomposition of the Navier-Stokes equations. Long numerical integrations are performed, allowing the computation of the scaling exponents of the velocity increments and energy flux moments. The dependence of the models on the generalized helicity parameter alpha and on the scale parameter lambda is also studied. Partial differential equations are finally derived in the limit when the ratio between shells goes to one.
引用
收藏
页码:3541 / 3550
页数:10
相关论文
共 36 条
  • [1] INFLUENCE OF HELICITY ON EVOLUTION OF ISOTROPIC TURBULENCE AT HIGH REYNOLDS-NUMBER
    ANDRE, JC
    LESIEUR, M
    [J]. JOURNAL OF FLUID MECHANICS, 1977, 81 (JUN9) : 187 - 207
  • [2] STATISTICAL-MECHANICS OF SHELL MODELS FOR 2-DIMENSIONAL TURBULENCE
    AURELL, E
    BOFFETTA, G
    CRISANTI, A
    FRICK, P
    PALADIN, G
    VULPIANI, A
    [J]. PHYSICAL REVIEW E, 1994, 50 (06) : 4705 - 4715
  • [3] ON THE SCALING OF 3-DIMENSIONAL HOMOGENEOUS AND ISOTROPIC TURBULENCE
    BENZI, R
    CILIBERTO, S
    BAUDET, C
    CHAVARRIA, GR
    [J]. PHYSICA D, 1995, 80 (04): : 385 - 398
  • [4] ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS
    BENZI, R
    PALADIN, G
    PARISI, G
    VULPIANI, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18): : 3521 - 3531
  • [5] EXTENDED SELF-SIMILARITY IN TURBULENT FLOWS
    BENZI, R
    CILIBERTO, S
    TRIPICCIONE, R
    BAUDET, C
    MASSAIOLI, F
    SUCCI, S
    [J]. PHYSICAL REVIEW E, 1993, 48 (01): : R29 - R32
  • [6] TRANSITION TO CHAOS IN A SHELL-MODEL OF TURBULENCE
    BIFERALE, L
    LAMBERT, A
    LIMA, R
    PALADIN, G
    [J]. PHYSICA D, 1995, 80 (1-2): : 105 - 119
  • [7] Role of inviscid invariants in shell models of turbulence
    Biferale, L
    Kerr, RM
    [J]. PHYSICAL REVIEW E, 1995, 52 (06): : 6113 - 6122
  • [8] INTERMITTENCY IN FULLY-DEVELOPED TURBULENCE - LOG-POISSON STATISTICS AND GENERALIZED SCALE COVARIANCE
    DUBRULLE, B
    [J]. PHYSICAL REVIEW LETTERS, 1994, 73 (07) : 959 - 962
  • [9] SCALING PROPERTIES OF A CLASS OF SHELL MODELS
    FRICK, P
    DUBRULLE, B
    BABIANO, A
    [J]. PHYSICAL REVIEW E, 1995, 51 (06) : 5582 - 5593
  • [10] Frisch U., 1985, Predictability in Geophysical Fluid Dynamics, P84