Microphysiology of Epileptiform Activity in Human Neocortex

被引:114
作者
Schevon, Catherine A. [1 ]
Ng, Sau K. [1 ]
Cappell, Joshua [2 ]
Goodman, Robert R. [3 ]
McKhann, Guy [3 ]
Waziri, Allen [3 ]
Branner, Almut [4 ]
Sosunov, Alexander [3 ]
Schroeder, Charles E. [5 ]
Emerson, Ronald G. [1 ,2 ]
机构
[1] Columbia Univ, Dept Neurol, New York, NY USA
[2] Columbia Univ, Dept Pediat, New York, NY 10027 USA
[3] Columbia Univ, Dept Neurol Surg, New York, NY 10027 USA
[4] Cyberkinet Neurotechnol Syst, Foxboro, MA USA
[5] Columbia Univ, Dept Psychiat, New York, NY USA
基金
美国国家科学基金会;
关键词
Multichannel extracellular recording; Epilepsy; Intracranial EEG; Epileptiform EEG discharges;
D O I
10.1097/WNP.0b013e31818e8010
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The authors report the use of dense two-dimensional microelectrode array recordings to characterize fine resolution electrocortical activity ("mu EEG") in epileptogenic human cortex. A 16-mm(2) 96 microelectrode array with 400-mu m interelectrode spacing was implanted in five patients undergoing invasive EEG monitoring for medically refractory epilepsy. High spatial resolution data from the allay were analyzed in conjunction with simultaneously acquired data from standard intracranial electrode grids and strips. mu EEG recorded from within the epileptogenic zone demonstrates discharges resembling both interictal epileptiform activity ("microdischarges") and electrographic seizures ("microseizures") but confined to cortical regions as small as 200 mu m(2). In two patients. this activity appeared to be involved in the initiation or propagation of electrographic seizures. The authors hypothesize that microdischarges and microseizures are generated by small cortical domains that form the substrate of epileptogenic cortex and play important roles in seizure initiation and propagation. and propagation.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 28 条
[1]   RELATIONSHIPS BETWEEN ORIENTATION-PREFERENCE PINWHEELS, CYTOCHROME-OXIDASE BLOBS, AND OCULAR-DOMINANCE COLUMNS IN PRIMATE STRIATE CORTEX [J].
BARTFELD, E ;
GRINVALD, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (24) :11905-11909
[2]   Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation [J].
Bikson, M ;
Fox, JE ;
Jefferys, JGR .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (04) :2330-2333
[3]   Analysis of chronic seizure onsets after intrahippocampal kainic acid injection in freely moving rats [J].
Bragin, A ;
Azizyan, A ;
Almajano, J ;
Wilson, CL ;
Engel, J .
EPILEPSIA, 2005, 46 (10) :1592-1598
[4]   Spatial stability over time of brain areas generating fast ripples in the epileptic rat [J].
Bragin, A ;
Wilson, CL ;
Engel, J .
EPILEPSIA, 2003, 44 (09) :1233-1237
[5]   Interictal high-frequency oscillations (80-500Hz) in the human epileptic brain: Entorhinal cortex [J].
Bragin, A ;
Wilson, CL ;
Staba, RJ ;
Reddick, M ;
Fried, I ;
Engel, J .
ANNALS OF NEUROLOGY, 2002, 52 (04) :407-415
[6]   Local generation of fast ripples in epileptic brain [J].
Bragin, A ;
Mody, I ;
Wilson, CL ;
Engel, J .
JOURNAL OF NEUROSCIENCE, 2002, 22 (05) :2012-2021
[7]  
Bragin A, 1999, HIPPOCAMPUS, V9, P137
[8]  
BRAGIN A, 2004, EPILIPSIA, V41, pS144
[9]   Daily variation in an intracranial EEG feature in humans detected by a responsive neurostimulator system [J].
Duckrow, Robert B. ;
Tcheng, Thomas K. .
EPILEPSIA, 2007, 48 (08) :1614-1620
[10]   PROPAGATION PATTERNS OF TEMPORAL SPIKES [J].
EMERSON, RG ;
TURNER, CA ;
PEDLEY, TA ;
WALCZAK, TS ;
FORGIONE, M .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1995, 94 (05) :338-348