Nonlinear programming algorithms using trust regions and augmented Lagrangians with nonmonotone penalty parameters

被引:46
作者
Gomes, FAM
Maciel, MC
Martínez, JM
机构
[1] Univ Campinas, UNICAMP, IMECC, Dept Appl Math, BR-13081970 Campinas, SP, Brazil
[2] Univ Nacl Sur, Dept Math, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
nonlinear programming; successive quadratic programming; trust regions; augmented Lagrangians; Lipschitz conditions;
D O I
10.1007/s10107980014a
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A model algorithm based on the successive quadratic programming method for solving the general nonlinear programming problem is presented. The objective function and the constraints of the problem are only required to be differentiable and their gradients to satisfy a Lipschitz condition. The strategy for obtaining global convergence is based on the trust region approach. The merit function is a type of augmented Lagrangian. A new updating scheme is introduced for the penalty parameter, by means of which monotone increase is not necessary. Global convergence results are proved and numerical experiments are presented.
引用
收藏
页码:161 / 200
页数:40
相关论文
共 30 条
[1]  
BIELSCHOWSKY RH, 1995, ADAPTIVE ALGORITHM B
[2]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[3]  
BURKE JV, 1989, J MATH ANAL APPL, V138, P111
[4]  
BYRD R, 1987, 1 SIAM C OPT HOUST T
[5]  
Celis MR, 1984, NUMERICAL OPTIMIZATI, P71
[6]  
Conn A.R., 1992, SPRINGER SERIES COMP, V17
[7]   A GLOBALLY CONVERGENT AUGMENTED LAGRANGIAN ALGORITHM FOR OPTIMIZATION WITH GENERAL CONSTRAINTS AND SIMPLE BOUNDS [J].
CONN, AR ;
GOULD, NIM ;
TOINT, PL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (02) :545-572
[8]   A global convergence theory for general trust-region-based algorithms for equality constrained optimization [J].
Dennis, JE ;
ElAlem, M ;
Maciel, MC .
SIAM JOURNAL ON OPTIMIZATION, 1997, 7 (01) :177-207
[10]  
Fletcher R., 1981, PRACTICAL METHODS OP