Affine processes for dynamic mortality and actuarial valuations

被引:229
作者
Biffis, E [1 ]
机构
[1] Univ Bocconi, Ist Metodi Quantitat, I-20135 Milan, Italy
关键词
affine jump-diffusion; Stochastic mortality; doubly stochastic processes; longevity risk; fair value;
D O I
10.1016/j.insmatheco.2005.05.003
中图分类号
F [经济];
学科分类号
02 ;
摘要
We address the risk analysis and market valuation of life insurance contracts in a jump-diffusion setup. We exploit the analytical tractability of affine processes to deal simultaneously with financial and demographic risks affecting a wide range of insurance covers. We then focus on mortality at pensionable ages and show how the risk of longevity can be taken into account. A parallel with the pricing of certain credit risky securities is drawn, in order to employ important results derived in that field. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 468
页数:26
相关论文
共 45 条
[1]  
ABBINK M, 2002, GETTING GRIPS FAIR V
[2]  
Abramowitz M., 1974, HDB MATH FUNCTIONS
[3]  
Artzner P., 1995, Mathematical Finance, V5, P187
[4]  
Bacinello AR., 2002, The Journal of Risk Finance, V3, P6, DOI [10.1108/eb043484, DOI 10.1108/EB043484]
[5]   Empirical performance of alternative option pricing models [J].
Bakshi, G ;
Cao, C ;
Chen, ZW .
JOURNAL OF FINANCE, 1997, 52 (05) :2003-2049
[6]   Spanning and derivative-security valuation [J].
Bakshi, G ;
Madan, D .
JOURNAL OF FINANCIAL ECONOMICS, 2000, 55 (02) :205-238
[7]   Post-'87 crash fears in the S&P 500 futures option market [J].
Bates, DS .
JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) :181-238
[8]  
BIFFIS E, 2003, AFFINE PROCESSES MOR
[9]  
Billingsley P., 1986, PROBABILITY MEASURE
[10]  
Bowers N., 1997, Actuarial mathematics