Self-similar numerical solutions of the porous-medium equation using moving mesh methods

被引:23
作者
Budd, CJ
Collins, GJ
Huang, WZ
Russell, RD
机构
[1] Univ Bath, Dept Math, Bath BA2 7AY, Avon, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[3] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[4] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1999年 / 357卷 / 1754期
关键词
porous-medium equation; self-similar solution; Lie-group invariance; conservation laws; mesh adaptation; equidistribution;
D O I
10.1098/rsta.1999.0364
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper examines a synthesis of adaptive mesh methods with the use of symmetry to study a partial differential equation. In particular, it considers methods which admit discrete self-similar solutions, examining the convergence of these to the true self-similar solution as well as their stability. Special attention is given to the nonlinear diffusion equation describing flow in a porous medium.
引用
收藏
页码:1047 / 1077
页数:31
相关论文
共 14 条
[1]  
Barenblatt G. I., 1996, Dimensional analysis, V14
[2]  
Bluman G. W., 1974, Similarity methods for differential equations
[3]   Moving mesh methods for problems with blow-up [J].
Budd, CJ ;
Huang, WH ;
Russell, RD .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02) :305-327
[4]  
BUDD CJ, 1998, PITMAN RES NOTES MAT, V380, P16
[5]  
BUDD CJ, 1996, PITMAN RES NOTES MAT, V344, P1
[6]  
DORODNITSYN VA, 1993, MODERN GROUP ANALYSIS: ADVANCED ANALYTICAL AND COMPUTATIONAL METHODS IN MATHEMATICAL PHYSICS, P191
[7]  
DRESNER L, 1983, PITMAN RES NOTES MAT, V88
[8]   MOVING MESH METHODS BASED ON MOVING MESH PARTIAL-DIFFERENTIAL EQUATIONS [J].
HUANG, WZ ;
REN, YH ;
RUSSELL, RD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 113 (02) :279-290
[9]   ASYMPTOTIC BEHAVIOR OF SOLUTION OF FILTRATION EQUATION [J].
KAMENOMOSTSKAYA, S .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (01) :76-87
[10]  
Murray J.D., 2002, Mathematical Biology: I. An Introduction