Global uniqueness for a two-dimensional inverse boundary value problem

被引:538
作者
Nachman, AI
机构
[1] University of Rochester, Rochester, NY
关键词
D O I
10.2307/2118653
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the coefficient gamma(x) of the elliptic equation del . (gamma del u) = 0 in a two-dimensional domain is uniquely determined by the corresponding Dirichlet-to-Neumann map on the boundary, and give a reconstruction procedure. For the equation Sigma partial derivative(i)(gamma(ij)partial derivative(j)u) = 0, two matrix-valued functions gamma(1) and gamma(2) yield the same Dirichlet-to-Neumann map if and only if there is a diffeomorphism of the domain which fixes the boundary and transforms gamma(1) into gamma(2).
引用
收藏
页码:71 / 96
页数:26
相关论文
共 48 条
[1]  
ABLOWITZ MJ, 1983, STUD APPL MATH, V69, P135
[2]   SINGULAR SOLUTIONS OF ELLIPTIC-EQUATIONS AND THE DETERMINATION OF CONDUCTIVITY BY BOUNDARY MEASUREMENTS [J].
ALESSANDRINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :252-272
[3]  
Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
[4]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45
[5]  
BEALS R, 1980, SEMINAIRE GOULAOUIC
[6]   ON A SPECTRAL TRANSFORM OF A KDV-LIKE EQUATION RELATED TO THE SCHRODINGER OPERATOR IN THE PLANE [J].
BOITI, M ;
LEON, JJP ;
MANNA, M ;
PEMPINELLI, F .
INVERSE PROBLEMS, 1987, 3 (01) :25-36
[7]  
CALDER\ON A.-P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[8]  
CANNON JR, 1963, INT J ENG SCI, V1, P453
[10]   INVERSE SCATTERING IN DIMENSION-2 [J].
CHENEY, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (01) :94-107